遗传 ›› 2014, Vol. 36 ›› Issue (9): 879-887.doi: 10.3724/SP.J.1005.2014.0879
任才芳,孙红艳,王立中,张国敏,樊懿萱,颜光耀,王丹,王锋
收稿日期:
2014-04-17
出版日期:
2014-09-20
发布日期:
2014-09-20
通讯作者:
王锋,博士,教授,研究方向:动物胚胎工程。E-mail: caeet@njau.edu.cn
E-mail:2012105033@njau.edu.cn
作者简介:
任才芳,博士研究生,研究方向:胚胎干细胞。
基金资助:
Caifang Ren, Hongyan Sun, Lizhong Wang, Guomin Zhang, Yixuan Fan, Guangyao Yan, Dan Wang, Feng Wang
Received:
2014-04-17
Online:
2014-09-20
Published:
2014-09-20
摘要: 诱导性多能干细胞(Induced pluripotent stem cells, iPSCs)是采用特定转录因子,将体细胞重编程为具有多能性的干细胞。iPSCs已成功由多种体细胞诱导出来,不仅具有发育多能性还能避免胚胎干细胞(Embryonic stem cells, ESCs)的伦理道德问题,已成为生命科学领域不可或缺的研究工具,具有广阔的应用前景。但获得高质量、遗传稳定的iPSCs是当前亟须解决的问题。文章对iPSCs重编程机制和遗传稳定性的研究进展进行了综述,以期为提高iPSCs的诱导效率、降低诱导成本、掌握iPSCs质量控制的关键点提供参考,从而推进多能性干细胞临床应用的发展。
任才芳,孙红艳,王立中,张国敏,樊懿萱,颜光耀,王丹,王锋. iPSCs遗传稳定性与重编程机制的研究进展[J]. 遗传, 2014, 36(9): 879-887.
Caifang Ren, Hongyan Sun, Lizhong Wang, Guomin Zhang, Yixuan Fan, Guangyao Yan, Dan Wang, Feng Wang. Reprogramming mechanism and genetic stability of induced pluripotent stem cells (iPSCs)[J]. HEREDITAS(Beijing), 2014, 36(9): 879-887.
[1]Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981, 292(5819): 154?156. [2]Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J, McLay R, Hall J, Ying QL, Smith A. Capture of authentic embryonic stem cells from rat blastocysts. Cell, 2008, 135(7): 1287?1298. [3]Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282(5391): 1145?1147. [4]Suemori H, Tada T, Torii R, Hosoi Y, Kobayashi K, Imahie H, Kondo Y, Iritani A, Nakatsuji N. Establishment of embryonic stem cell lines from cynomolgus monkey blas?tocysts produced by ivf or icsi. Dev Dyn, 2001, 222(2): 273?279. [5]Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Hearn JP. Pluripotent cell lines derived from common marmoset (callithrix jacchus) blastocysts. Biol Reprod, 1996, 55(2): 254?259. [6]Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cul?tures by defined factors. Cell, 2006, 126(4): 663?676. [7]Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. Nature, 2012, 481(7381): 295?305. [8]Urano F. Wolfram syndrome ips cells: The first human cell model of endoplasmic reticulum disease. Diabetes, 2014, 63(3): 844?846. [9] Phillips MJ, Perez ET, Martin JM, Reshel ST, Wallace KA, Capowski EE, Singh R, Wright LS, Clark EM, Barney PM, Stewart R, Dickerson SJ, Miller MJ, Percin EF, Thomson JA, Gamm DM. Modeling human retinal development with patient-specific Induced Pluripotent Stem cells rev?eals multiple roles for Visual System Homeobox 2. Stem Cells, 2014, 32(6): 1480–1492. [10]Bock C, Kiskinis E, Verstappen G, Gu HC, Boulting G, Smith ZD, Ziller M, Croft GF, Amoroso MW, Oakley DH, Gnirke A, Eggan K, Meissner A. Reference maps of human es and ips cell variation enable high-throug?hput character?ization of pluripotent cell lines. Cell, 2011, 144(3): 439?452 [11]Shao KF, Koch C, Gupta MK, Lin Q, Lenz M, Laufs S, Denecke B, Schmidt M, Linke M, Hennies HC, Hescheler J, Zenke M, Zechner U, ?aric T, Wagner W. Induced pluripotent mesenchymal stromal cell clones retain donor-derived differences in DNA methylation profiles. Mol Ther Jan, 2013, 21(1): 240–250. [12]Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, Lynch C, Harness JV, Lee S, Barrero MJ, Ku S, Martynova M, Semechkin R, Galat V, Gottesfeld J, Izpisua Belmonte JCI, Murry C, Keirstead HS, Park HS, Schmidt U, Laslett AL, Muller FJ, Nievergelt CM, Shamir R, Loring JF. Dynamic changes in the copy number of plu?ripotency and cell proliferation genes in human escs and ipscs during reprogramming and time in culture. Cell Stem Cell, 2011, 8(1): 106?118. [13]Bar-Nur O, Russ HA, Efrat S, Benvenisty N. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pan?creatic islet beta cells. Cell Stem Cell, 2011, 9(1): 17?23. [14]Urbach A, Bar-Nur O, Daley GQ, Benvenisty N. Diffe?rential modeling of fragile x syndrome by human embr?yonic stem cells and induced pluripotent stem cells. Cell Stem Cell, 2010, 6(5): 407?411. [15]Bao L, He LXZ, Chen JJ, Wu Z, Liao J, Rao LJ, Ren JT, Li H, Zhu H, Qian L, Gu YJ, Dai HM, Xu X, Zhou JQ, Wang W, Cui C, Xiao L. Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors. Cell Res, 2011, 21(4): 600?608. [16]Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ. Highly efficient reprogramming to pluripotency and dir?ected differentiation of human cells with synthetic mod?ified mrna. Cell Stem Cell, 2010, 7(5): 618?630. [17]Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, Ge J, Xu J, Zhang Q, Zhao Y, Deng H. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 2013, 341(6146): 651?654. [18]Esteban MA, Pei DQ. Vitamin c improves the quality of somatic cell reprogramming. Nat Genet, 2012, 44(4): 366? 367. [19]Fluri DA, Tonge PD, Song H, Baptista RP, Shakiba N, Shukla S, Clarke G, Nagy A, Zandstra PW. Derivation, expansion and differentiation of induced pluripotent stem cells in continuous suspension cultures. Nat Methods, 2012, 9(5): 509?516. [20]Nakagawa M, Taniguchi Y, Senda S, Takizawa N, Ichisaka T, Asano K, Morizane A, Doi D, Takahashi J, Nishizawa M, Yoshida Y, Toyoda T, Osafune K, Sekiguchi K, Yamanaka S. A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci Rep, 2014, 4: 3594. [21]Taapken SM, Nisler BS, Newton MA, Sampsell-Barron TL, Leonhard KA, McIntire EM, Montgomery KD. Karotypic abnormalities in human induced pluripotent stem cells and embryonic stem cells. Nat Biotech, 2011, 29(4): 313?314. [22]Ronen D, Benvenisty N. Genomic stability in reprogram?ming. Curr Opin Genet Dev, 2012, 22(5): 444?449. [23]Ben-David U, Benvenisty N. High prevalence of evolu-tionarily conserved and species-specific genomic aberra?tions in mouse pluripotent stem cells. Stem Cells, 2012, 30(4): 612?622. [24]Martins-Taylor K, Nisler BS, Taapken SM, Compton T, Crandall L, Montgomery KD, Lalande M, Xu RH. Recurrent copy number variations in human induced pluripotent stem cells. Nat Biotech, 2011, 29(6): 488?491. [25]Mayshar Y, Ben-David U, Lavon N, Biancotti JC, Yakir B, Clark AT, Plath K, Lowry WE, Benvenisty N. Identifi?cation and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell, 2010, 7(4): 521?531. [26]Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, N?rv? E, Ng S, Sourour M, H?m?l?inen R, Olsson C, Lundin K, Mikkola M, Trokovic R, Peitz M, Brüstle O, Bazett-Jones DP, Alitalo K, Lahesmaa R, Nagy A, Otonkoski T. Copy number variation and selection during reprogramming to pluripotency. Nature, 2011, 471(7336):58–62. [27]Abyzov A, Mariani J, Palejev D, Zhang Y, Haney MS, Tomasini L, Ferrandino AF, Rosenberg Belmaker LA, Szekely A, Wilson M, Kocabas A, Calixto NE, Grigorenko EL, Huttner A, Chawarska K, Weissman S, Urban AE, Gerstein M, Vaccarino FM. Somatic copy number mosaic?ism in human skin revealed by induced pluripotent stem cells. Nature, 2012, 492(7429): 438?442. [28]Hamada M, Malureanu LA, Wijshake T, Zhou W, van Deursen JM. Reprogramming to pluripotency can conceal somatic cell chromosomal instability. PLoS Genet, 2012, 8(8): e1002913. [29] Ji JF, Ng SH, Sharma V, Neculai D, Hussein S, Sam M, Trinh Q, Church GM, Mcpherson JD, Nagy A, Batada NN. Elevated coding mutation rate during the reprogramming of human somatic cells into induced pluripotent stem cells. Stem Cells, 2012, 30(3): 435?440. [30]Cheng LZ, Hansen NF, Zhao L, Du YT, Zou CL, Donovan FX, Chou BK, Zhou GY, Li SJ, Dowey SN, Ye ZH, Chandrasekharappa SC, Yang HM, Mullikin JC, Liu PP. Low incidence of DNA sequence variation in human induced pluripotent stem cells generated by nonintegrating plasmid expression. Cell Stem Cell, 2012, 10(3): 337–344. [31]Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY, Apostolou E, Stadtfeld M, Li Y, Shioda T, Natesan S, Wagers AJ, Melnick A, Evans T, Hochedlinger K. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol, 2010, 28(8): 848?855. [32]Young MA, Larson DE, Sun CW, George DR, Ding L, Miller CA, Lin L, Pawlik KM, Chen K, Fan X, Schmidt H, Kalicki-Veizer J, Cook LL, Swift GW, Demeter RT, Wendl MC, Sands MS, Mardis ER, Wilson RK, Townes TM, Ley TJ. Background mutations in parental cells account for most of the genetic heterogeneity of induced pluripotent stem cells. Cell Stem Cell, 2012, 10(5): 570?582. [33]McConnell MJ, Lindberg MR, Brennand KJ, Piper JC, Voet T, Cowing-Zitron C, Shumilina S, Lasken RS, Vermeesch JR, Hall IM, Gage FH. Mosaic copy number variation in human neurons. Science, 2013, 342(6158): 632?637. [34] Liu P, Kaplan A, Yuan B, Hanna JH, Lupski JR, Reiner O. Passage number is a major contributor to genomic structural variations in mouse ips cells. Stem Cells, 2014, doi: 10.1002/stem.1779. [35]Suzuki K, Yu C, Qu J, Li M, Yao XT, Yuan TT, Goebl A, Tang SW, Ren RT, Aizawa E, Zhang F, Xu XL, Soligalla RD, Chen F, Kim J, Kim NY, Liao HK, Benner C, Esteban CR, Jin YB, Liu GH, Li YR, Izpisua Belmonte JC. Targeted gene correction minimally impacts whole-gen?ome mutational load in human-disease-specific induced pluripotent stem cell clones. Cell Stem Cell, 2014, 15(1): 31–36. [36]Vaziri H, Chapman K, Guigova A, Teichroeb J, Lacher MD, Sternberg H, Singec I, Briggs L, Wheeler J, Sam?pathkumar J, Gonzalez R, Larocca D, Murai J, Snyder E, Andrews W, Funk WH, West MD. Spontaneous reversal of the developmental aging of normal human cells following transcriptional reprogramming. Regen Med, 2010, 5(3): 345–363. [37]Wang F, Yin Y, Ye XY, Liu K, Zhu HY, Wang LL, Chiourea M, Okuka M, Ji GZ, Dan JM, Zuo BF, Li MS, Zhang Q, Liu N, Chen LY, Pan XH, Gagos S, Keefe DL, Liu L. Molecular insights into the heterogeneity of telomere reprogramming in induced pluripotent stem cells. Cell Res, 2012, 22(4): 757?768. [38]Yehezkel S, Rebibo-Sabbah A, Segev Y, Tzukerman M, Shaked R, Huber I, Gepstein L, Skorecki K, Selig S. Reprogramming of telomeric regions during the genera?tion of human induced pluripotent stem cells and subse?quent differentiation into fibroblast-like derivatives. Epigenetics, 2011, 6(1): 63?75. [39]Prigione A, Lichtner B, Kuhl H, Struys EA, Wamelink M, Lehrach H, Ralser M, Timmermann B, Adjaye J. Human induced pluripotent stem cells harbor homoplasmic and heteroplasmic mitochondrial DNA mutations while maintaining human embryonic stem cell-like metabolic reprogramming. Stem Cells, 2011, 29(9): 1338?1348. [40] Sharma A, Diecke S, Zhang WY, Lan F, He C, Mord?winkin NM, Chua KF, Wu JC. The role of sirt6 protein in aging and reprogramming of human induced pluripotent stem cells. J Biol Chem, 2013, 288(25): 18439?18447. [41]Banito A, Rashid ST, Acosta JC, Li S, Pereira CF, Geti I, Pinho S, Silva JC, Azuara V, Walsh M, Vallier L, Gil J. Senescence impairs successful reprogramming to pluri?potent stem cells. Genes Dev, 2009, 23(18): 2134?2139. [42]Tanabe K, Nakamura M, Narita M, Takahashi K, Yamanaka S. Maturation, not initiation, is the major road?block during reprogramming toward pluripotency from human fibroblasts. Proc Natl Acad Sci USA, 2013, 110(30): 12172?12179. [43]Ohta S, Nishida E, Yamanaka S, Yamamoto T. Global splicing pattern reversion during somatic cell reprogram?ming. Cell Rep, 2013, 5(2): 357–366. [44]Okita K, Ichisaka T, Yamanaka S. Generation of germ-line-competent induced pluripotent stem cells. Nature, 2007, 448(7151): 313?317. [45] Mikkelsen TS, Hanna J, Zhang XL, Ku MC, Wernig M, Schorderet P, Bernstein BE, Jaenisch R, Lander ES, Mei?ssner A. Dissecting direct reprogramming through integ?rative genomic analysis. Nature, 2008, 454(7205): 794?794. [46]Fussner E, Djuric U, Strauss M, Hotta A, Perez-Iratxeta C, Lanner F, Dilworth FJ, Ellis J, Bazett-Jones DP. Cons?titutive heterochromatin reorganization during somatic cell reprogramming. Embo J, 2011, 30(9): 1778?1789. [47]Mansour AA, Gafni O, Weinberger L, Zviran A, Ayyash M, Rais Y, Krupalnik V, Zerbib M, Amann-Zalcenstein D, Maza I, Geula S, Viukov S, Holtzman L, Pribluda A, Can?aani E, Horn-Saban S, Amit I, Novershtern N, Hanna JH. The h3k27 demethylase utx regulates somatic and germ cell epigenetic reprogramming. Nature, 2012, 488(7411): 409? 413. [48]Ang YS, Tsai SY, Lee DF, Monk J, Su J, Ratnakumar K, Ding JJ, Ge YC, Darr H, Chang B, Wang JL, Rendl M, Bernstein E, Schaniel C, Lemischka IR. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell, 2011, 145(2): 183?197. [49] Yang P, Wang YX, Chen JY, Li H, Kang L, Zhang Y, Chen S, Zhu B, Gao SR. Rcor2 is a subunit of the lsd1 complex that regulates esc property and substitutes for sox2 in reprogramming somatic cells to pluripotency. Stem Cells, 2011, 29(5): 791–801. [50]Li X, Shan ZY, Wu YS, Shen XH, Liu CJ, Shen JL, Liu ZH, Lei L. Generation of neural progenitors from induced bama miniature pig pluripotent cells. Reproduc?tion, 2014, 147(1): 65?72. [51]Ohi Y, Qin H, Hong C, Blouin L, Polo JM, Guo T, Qi Z, Downey SL, Manos PD, Rossi DJ, Yu J, Hebrok M, Hochedlinger K, Costello JF, Song JS, Ramalho-Santos M. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human ips cells. Nat Cell Biol, 2011, 13(5): 541?549. [52]Williams K, Christensen J, Pedersen MT, Johansen JV, Cloos PAC, Rappsilber J, Helin K. Tet1 and hydroxy?methylcytosine in transcription and DNA methylation fidelity. Nature, 2011, 473(7347): 343?348 [53] Koch CM, Reck K, Shao KF, Lin Q, Joussen S, Ziegler P, Walenda G, Drescher W, Opalka B, May T, Brummendorf T, Zenke M, Saric T, Wagner W. Pluripotent stem cells escape from senescence-associated DNA methylation cha?nges. Genome Res, 2013, 23(2): 248?259.[54]Deng J, Shoemaker R, Xie B, Gore A, LeProust EM, Antosiewicz-Bourget J, Egli D, Maherali N, Park IH, Yu J, Daley GQ, Eggan K, Hochedlinger K, Thomson J, Wang W, Gao Y, Zhang K. Targeted bisulfite sequencing rev-eals changes in DNA methylation associated with nuclear reprogramming. Nat Biotech, 2009, 27(4): 353?360 [55]Saitou M, Kagiwada S, Kurimoto K. Epigenetic rep-rogramming in mouse pre-implantation development and primordial germ cells. Development, 2012, 139(1): 15?31. [56]Zhang H, Jiao WW, Sun L, Fan JY, Chen MF, Wang H, Xu XY, Shen AD, Li T, Niu BB, Ge SF, Li W, Cui JW, Wang GJ, Sun JN, Fan XQ, Hu X,, Mrsny Randall J, Hoffman Andrew R, Hu J-F. Intrachromosomal looping is required for activation of endogenous pluripotency genes during reprogramming. Cell Stem Cell, 2013, 13(1): 30?35. [57]Tchieu J, Kuoy E, Chin MH, Trinh H, Patterson M, Sherman SP, Aimiuwu O, Lindgren A, Hakimian S, Zack JA, Clark AT, Pyle AD, Lowry WE, Plath K. Female human ipscs retain an inactive x chromosome. Cell Stem Cell, 2010, 7(3): 329?342. [58] Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K. Directly reprogrammed fibrob?lasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 2007, 1(1): 55?70. |
[1] | 张競文,续倩,李国亮. 癌症发生发展中的表观遗传学研究[J]. 遗传, 2019, 41(7): 567-581. |
[2] | 马志鹏, 陈军. 无义突变与“遗传补偿效应”[J]. 遗传, 2019, 41(5): 359-364. |
[3] | 岳敏, 杨禹, 郭改丽, 秦曦明. 哺乳动物生物钟的遗传和表观遗传研究进展[J]. 遗传, 2017, 39(12): 1122-1137. |
[4] | 李元丰, 韩玉波, 曹鹏博, 孟金凤, 李海北, 秦庚, 张锋, 靳光付, 杨勇, 邬玲仟, 平杰, 周钢桥. 2015年中国医学遗传学研究领域若干重要进展[J]. 遗传, 2016, 38(5): 363-390. |
[5] | 张笑, 贾桂芳. RNA表观遗传修饰:N6-甲基腺嘌呤[J]. 遗传, 2016, 38(4): 275-288. |
[6] | 方科, 张凯翔, 王建, 付志猛, 赵湘辉. 表观遗传学新标记--5-羟甲基胞嘧啶检测方法的研究进展[J]. 遗传, 2016, 38(3): 206-216. |
[7] | 孙凌云, 李星逾, 孙志为. 原发性肝癌的表观遗传学及其治疗[J]. 遗传, 2015, 37(6): 517-527. |
[8] | 邓大君. DNA甲基化和去甲基化的研究现状及思考[J]. 遗传, 2014, 36(5): 403-410. |
[9] | 丁楠, 渠鸿竹, 方向东. ENCODE计划和功能基因组研究[J]. 遗传, 2014, 36(3): 237-247. |
[10] | 沈圣, 屈彦纯, 张军. 下一代测序技术在表观遗传学研究中的重要应用及进展[J]. 遗传, 2014, 36(3): 256-275. |
[11] | 李美婷, 曹林林, 杨洋. 表观遗传修饰在糖脂代谢中的作用[J]. 遗传, 2014, 36(3): 200-207. |
[12] | 王庭璋 单杲 徐建红 薛庆中. 基因组规模DNA甲基化测序数据预处理及表观遗传分析[J]. 遗传, 2013, 35(6): 685-684. |
[13] | 秦丹 徐存拴. 非编码DNA序列的功能及其鉴定[J]. 遗传, 2013, 35(11): 1253-1264. |
[14] | 汤琳琳 刘琼 步世忠 徐雷艇 王钦文 麦一峰 段世伟. 2型糖尿病环境因素与DNA甲基化的研究进展[J]. 遗传, 2013, 35(10): 1143-1152. |
[15] | 高山,张宁,李勃,徐硕,叶彦波,阮吉寿. 下一代测序中ChIP-seq数据的处理与分析[J]. 遗传, 2012, 34(6): 773-783. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: