[1] Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KHS. Viable offspring derived from fetal and adult mam-malian cells. Nature, 1997, 385(6619): 810–813.
[2] Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, Ponce de León FA, Robl JM. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science, 1998, 280(5367): 1256–1258.
[3] Wakayama T, Perry ACF, Zuccotti M, Johnson KR, Yan-agimachi R. Full-term development of mice from enucle-ated oocytes injected with cumulus cell nuclei. Nature, 1998, 394(6691): 369–374.
[4] Onishi A, Iwamoto M, Akita T, Mikawa S, Takeda K, Awata T, Hanada H, Perry ACF. Pig cloning by microinjection of fetal fibroblast nuclei. Science, 2000, 289(5482): 1188–1190.
[5] Shin T, Kraemer D, Pryor J, Liu L, Rugila J, Howe L, Buck S, Murphy K, Lyons L, Westhusin M. A cat cloned by nuclear transplantation. Nature, 2002, 415(6874): 589.
[6] Chesné P, Adenot PG, Viglietta C, Baratte M, Boulanger L, Renard JP. Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat Biotechnol, 2002, 20(4): 366–369.
[7] Young LE, Sinclair KD, Wilmut I. Large offspring syndrome in cattle and sheep. Rev Reprod, 1998, 3(3): 155–163.
[8] Ono Y, Shimozawa N, Ito M, Kono T. Cloned mice from fetal fibroblast cells arrested at metaphase by a serial nu-clear transfer. Biol Reprod, 2001, 64(1): 44–50.
[9] Chavatte-Palmer P, Heyman Y, Richard C, Monget P, LeBourhis D, Kann G, Chilliard Y, Vigon X, Renard JP. Clinical, hormonal, and hematologic characteristics of bo-vine calves derived from nuclei from somatic cells. Biol Reprod, 2002, 66(6): 1596–1603.
[10] Eggan K, Akutsu H, Loring J, Jackson-Grusby L, Klemm M, Rideout WM 3rd, Yanagimachi R, Jaenisch R. Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci USA, 2001, 98(11): 6209–6214.
[11] Kang YK, Koo DB, Park JS, Choi YH, Chung AS, Lee KK, Han YM. Aberrant methylation of donor genome in clo-ned bovine embryos. Nat Genet, 2001, 28(2): 173–177.
[12] Jeanisch R, Eggan K, Humpherys D, Rideout W, Hochedlinger K. Nuclear cloning, stem cells, and genomic reprogramming. Cloning Stem Cells, 2002, 4(4): 389–396.
[13] Costa-Borges N, Gonzalez S, Santaló J, Ibá?ez E. Effect of the enucleation procedure on the reprogramming potential and developmental capacity of mouse cloned embryos treated with valproic acid. Reproduction, 2011, 141(6): 789– 800.
[14] Wakayama S, Cibelli JB, Wakayama T. Effect of timing of the removal of oocyte chromosomes before or after injec-tion of somatic nucleus on development of NT embryos. Cloning Stem Cells, 2003, 5(3): 181–189.
[15] Enright B, Kubota C, Yang X, Tian XC. Epigenetic char-acteristics and development of embryos cloned from do-nor cells treated by trichostatin A or 5-aza-2'-deoxycy?tidine. Biol Reprod, 2003, 69(3): 896–901.
[16] Kurome M, Hisatomi H, Matsumoto S, Tomii R, Ueno S, Hiruma K, Saito H, Nakamura K, Okumura K, Matsumoto M, Kaji Y, Endo F, Nagashima H. Production efficiency and telomere length of the cloned pigs following serial somatic cell nuclear transfer. J Reprod Dev, 2008, 54(4): 254–258.
[17] Kang YK, Park J, Koo DB, Choi YH, Kim SU, Lee KK, Han YM. Limited demethylation leaves mosaic-type methylation states in cloned bovine pre-implantation em-bryos. EMBO J, 2002, 21(5): 1092–1100.
[18] Dean W, Santoa F, Stojkovic M, Zakhartchenko V, Walter J, Wolf E, Reik W. Conservation of methylation repro-gramming in mammalian development: aberrant repro-gramming in cloned embryos. Proc Natl Acad Sci USA, 2001, 98(24): 13734–13738.
[19] Beaujean N, Taylor J, Garden J, Wilmut I, Meehan R, Young L. Effect of limited DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear transfer. Biol Reprod, 2004, 71(1): 185–193.
[20] Garcia BA, Hake SB, Diaz RL, Kauer M, Morris SA, Recht J, Shabanowitz J, Mishra N, Strahl BD, Allis CD, Hunt DF. Organismal differences in post-translational modifications in histones H3 and H4. J Biol Chem, 2007, 282(10): 7641–7655.
[21] Enright BP, Sung LY, Chang CC, Yang X, Tian XC. Meth-ylation and acetylation characteristics of cloned bovine embryos from donor cells treated with 5-aza-2'-deoxycy-tidine. Biol Reprod, 2005, 72(4): 944–948.
[22] Suteevun T, Parnpai R, Smith SL, Chang CC, Muenthaisong S, Tian XC. Epigenetic characteristics of cloned and in vitro-fertilized swamp buffalo (Bubalus bubalis) embryos. J Anim Sci, 2006, 84(8): 2065–2071.
[23] Bui HT, Van Thuan N, Wakayama T, Miyano T. Chromatin remodeling in somatic cells injected into mature pig oo-cytes. Reproduction, 2006, 131(6): 1037–1049.
[24] Wang FC, Kou ZH, Zhang Y, Gao SR. Dynamic repro-gramming of histone acetylation and methylation in the first cell cycle of cloned mouse embryos. Biol Reprod, 2007, 77(6): 1007–1016.
[25] Papp B, Müller J. Histone trimethylation and the mainte-nance of transcriptional ON and OFF states by trxG and PcG protein. Genes Dev, 2006, 20(15): 2041–2054.
[26] Zhang M, Wang FC, Kou ZH, Zhang Y, Gao SR. Defec-tive chromatin structure in somatic cell cloned mouse em-bryos. J Biol Chem, 2009, 284(37): 24981–24987.
[27] Kalantry S, Purushothaman S, Bowen RB, Starmer J, Magnuson T. Evidence of Xist RNA-independent initiation of mouse imprinted X-chromosome inactivation. Nature, 2009, 460(7255): 647–651.
[28] Nolen LD, Gao SR, Han ZM, Mann MRW, Chung YG, Otte AP, Bartolomei MS, Latham KE. X chromosome re-activation and regulation in cloned embryos. Dev Biol, 2005, 279(2): 525–540.
[29] Inoue K, Kohda T, Sugimoto M, Sado T, Ogonuki N, Matoba S, Shiura H, Ikeda R, Mochida K, Fujii T, Sawai K, Otte AP, Tian XC, Yang XZ, Ishino F, Abe K, Ogura A. Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer. Science, 2010, 330(6003): 496–499.
[30] Xue F, Tian XC, Du FL, Kubota C, Taneja M, Dinnyes A, Dai YP, Levine H, Pereira LV, Yang XZ. Aberrant patterns of X chromosome inactivation in bovine clones. Nat Genet, 2002, 31(2): 216–220.
[31] Smith SL, Everts RE, Tian XC, Du FL, Sung LY, Rodri-guez-Zas SL, Jeong BS, Renard JP, Lewin HA, Yang XZ. Global gene expression profiles reveal significant nuclear reprogramming by the blastocyst stage after cloning. Proc Natl Acad Sci USA, 2005, 102(49): 17582–17587.
[32] Humpherys D, Eggan K, Akutsu H, Hochedlinger K, Rideout WM 3rd, Biniszkiewicz D, Yanagimachi R, Jaenisch R. Epigenetic instability in ES cells and cloned mice. Science, 2001, 293(5527): 95–97.
[33] Constancia M, Pickard B, Kelsey G, Reik W. Imprinting mechanisms. Genome Res, 1998, 8(9): 881–900.
[34] Han DW, Song SJ, Uhum SJ, Do JT, Kim NH, Chung KS, Lee HT. Expression of IGF2 and IGF receptor mRNA in bovine nuclear transferred embryos. Zygote, 2003, 11(3): 245–252.
[35] Inoue K, Kohda T, Lee J, Ogonuki N, Mochida K, Noguchi Y, Tanemura K, Kaneko-Ishino T, Ishino F, Ogura A. Faithful expression of imprinted genes in cloned mice. Science, 2002, 295(5553): 297.
[36] Yang L, Chavatte-Palmer P, Kubota C, O’Neill M, Hoagland T, Renard JP, Taneja M, Yang XZ, Tian XC. Expression of imprinted genes is aberrant in deceased newborn cloned calves and relatively normal in surviving adult clones. Mol Reprod Dev, 2005, 71(4): 431–438.
[37] Wei YC, Zhu J, Huan YJ, Liu ZF, Yang CR, Zhang XM, Mu YS, Xia P, Liu ZH. Aberrant expression and methylation status of putatively imprinted genes in placenta of cloned piglets. Cell Reprogram, 2010, 12(2): 213–222. [38] Blackburn EH. The telomere and telomerase: nucleic ac-id-protein complexes acting in a telomere homeostasis system. A review. Biochemistry, 1997, 62(11): 1196–1201.
[39] Shiels PG, Kind AJ, Campbell KH, Waddington D, Wilmut I, Colman A, Schnieke AE. Analysis of telomere lengths in cloned sheep. Nature, 1999, 399(6734): 316–317.
[40] Jeon HY, Hyun SH, Lee GS, Kim HS, Kim S, Jeong YW, Kang SK, Lee BC, Han JY, Ahn C, Hwang WS. The analysis of telomere length and telomerase activity in cloned pigs and cows. Mol Reprod Dev, 2005, 71(3): 315–320.
[41] Miyashita N, Shiga K, Yonai M, Kaneyama K, Kobayashi S, Kojima T, Goto Y, Kishi M, Aso H, Suzuki T, Sakaguchi M, Nagai T. Remarkable differences in telomere lengths among cloned cattle derived from different cell types. Biol Reprod, 2002, 66(6): 1649–1655.
[42] Niemann H, Tian XC, King WA, Lee RS. Epigenetic re-programming in embryonic and foetal development upon somatic cell nuclear transfer cloning. Reproduction, 2008, 135(2): 151–163.
[43] Jafari S, Hosseini MS, Hajian M, Forouzanfar M, Jafarpour F, Abedi P, Ostadhosseini S, Abbasi H, Gourabi H, Shahverdi AH, Dizaj AV, Anjomshoaa M, Haron W, Noorshariza N, Yakub H, Nasr-Esfahani MH. Improved in vitro development of cloned bovine Embryos using S-adenosylhomocysteine, a non-toxic epigenetic modifying reagent. Mol Reprod Dev, 2011, 78(8): 576–584.
[44] Wang YS, Xiong XR, An ZX, Wang LJ, Liu J, Quan FS, Hua S, Zhang Y. Production of cloned calves by combination treatment of both donor cells and early cloned embryos with 5-aza-2'-deoxycytidine and trichostatin A. Theriogenology, 2011, 75(5): 819–825.
[45] Xu WH, Li ZC, Yu B, He XY, Shi JS, Zhou R, Liu DW, Wu ZF. Effects of DNMT1 and HDAC inhibitors on gene-specific methylation reprogramming during porcine somatic cell nuclear transfer. PLoS ONE, 2013, 8(5): e64705.
[46] Ono T, Li C, Mizutani E, Terashita Y, Yamagata K, Waka-yama T. Inhibition of class IIb histone deacetylase signif-icantly improves cloning efficiency in mice. Biol Reprod, 2010, 83(6): 927–937.
[47] Akagi S, Matsukawa K, Mizutani E, Fukunari K, Kaneda M, Watanabe S, Takahashi S. Treatment with a histone deacetylase inhibitor after nuclear transfer improves the preimplantation development of cloned bovine embryos. J Reprod Dev, 2011, 57(1): 120–126.
[48] Lee MJ, Kim SW, Lee HG, Im GS, Yang BC, Kim NH, Kim DH. Trichostatin A promotes the development of bovine somatic cell nuclear transfer embryos. J Reprod Dev, 2011, 57(1): 34–42.
[49] Yamanaka K, Sugimura S, Wakai T, Kawahara M, Sato E. Acetylation level of histone H3 in early embryonic stages affects subsequent development of miniature pig somat-ic cell nuclear transfer embryos. J Reprod Dev, 2009, 55(6): 638–644.
[50] Meng QG, Polgar Z, Liu J, Dinnyes A. Live birth of so-matic cell-cloned rabbits following trichostatin A treatment and cotransfer of parthenogenetic embryos. Cloning Stem Cells, 2009, 11(1): 203–208.
[51] Kishigami S, Mizutani E, Ohta H, Hikichi T, Van Thuan N, Wakayama S, Bui HT, Wakayama T. Significant im-provement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochem Bi-ophys Res Commun, 2006, 340(1): 183–189.
[52] Wakayama T, Kohda T, Obokata H, Tokoro M, Li C, Terashita Y, Mizutani E, Nguyen VT, Kishigami S, Ishino F, Wakayama T. Successful Serial Recloning in the mouse over multiple generations. Cell Stem Cell, 2013, 12(3): 293–297.
[53] Wakayama S, Wakayama T. Improvement of mouse cloning using nuclear transfer-derived embryonic stem cells and/or histone deacetylase inhibitor. Int J Dev Biol, 2010, 54(11–12): 1641–1648.
[54] Van Thuan N, Bui HT, Kim JH, Hikichi T, Wakayama S, Kishigami S, Mizutani E, Wakayama T. The histone deacetylase inhibitor scriptaid enhances nascent mRNA production and rescues full-term development in cloned inbred mice. Reproduction, 2009, 138(2): 309–317.
[55] Su JM, Wang YS, Li YY, Li RZ, Li Q, Wu YY, Quan FS, Liu J, Guo ZK, Zhang Y. Oxamflatin significantly improves nuclear reprogramming, blastocyst quality, and in vitro development of bovine SCNT embryos. PLoS ONE, 2011, 6(8): e23805.
[56] Miyoshi K, Mori H, Mizobe Y, Akasaka E, Ozawa A, Yo-shida M, Sato M. Valproic acid enhances in vitro devel-opment and Oct-3/4 expression of miniature pig somatic cell nuclear transfer embryos. Cell Reprogram, 2010, 12(1): 67–74.
[57] Xu W, Wang Y, Li Y, Wang L, Xiong X, Su J, Zhang Y. Valproic acid improves the in vitro development compe-tence of bovine somatic cell nuclear transfer embryos. Cell Reprogram, 2012, 14(2): 138–145.
[58] Kim YJ, Ahn KS, Kim M, Shim H. Comparison of poten-cy between histone deacetylase inhibitors trichostatin A and valproic acid on enhancing in vitro development of porcine somatic cell nuclear transfer embryos. In Vitro Cell Dev Biol Anim, 2011, 47(4): 283–289.
[59] Isaji Y, Murata M, Takaguchi N, Mukai T, Tajima Y, Imai H, Yamada M. Valproic acid treatment from the 4-cell stage improves Oct4 expression and nuclear distribution of histone H3K27me3 in mouse cloned blastocysts. J Reprod Dev, 2013, 59(2): 196–204.
[60] Jin JX, Li S, Gao QS, Hong Y, Jin L, Zhu HY, Yan CG, Kang JD, Yin XJ. Significant improvement of pig cloning efficiency by treatment with LBH589 after somatic cell nuclear transfer. Theriogenology, 2013, 80(6): 630–635.
[61] Jin JX, Li S, Hong Y, Jin L, Zhu HY, Guo Q, Gao QS, Yan CG, Kang JD, Yin XJ. CUDC-101, a histone deacetylase inhibitor, improves the in vitro and in vivo developmen-tal competence of somatic cell nuclear transfer pig embryos. Theriogenology, 2014, 81(4): 572–578.
[62] Song YR, Hai T, Wang Y, Guo R, Li W, Wang L, Zhou Q. Epigenetic reprogramming, gene expression and in vitro development of porcine SCNT embryos are significantly improved by a histone deacetylase inhibitor-m-carboxyci-nnamic acid bishydroxamide (CBHA). Protein Cell, 2014, 5(5): 382–393.
[63] Dai XP, Hao J, Hou XJ, Hai T, Fan Y, Yu Y, Jouneau A, Wang L, Zhou Q. Somatic nucleus reprogramming is significantly improved by m-carboxycinnamic acid bishydroxamide, a histone deacetylase inhibitor. J Biol Chem, 2010, 285(40): 31002–31010.
[64] Ogura A, Inoue K, Wakayama T. Recent advancements in cloning by somatic cell nuclear transfer. Phil Trans R Soc Lond B Biol Sci, 2013, 368(1609): 20110329.
[65] Matoba S, Inoue K, Kohda T, Sugimoto M, Mizutani E, Ogonuki N, Nakamura T, Abe K, Nakano T, Ishino F, Ogura A. RNAi-mediated knockdown of Xist can rescue the impaired postimplantation development of cloned mouse embryos. Proc Natl Acad Sci USA, 2011, 108(51): 20621–20626.
[66] Zhou W, Wang K, Ruan W, Bo Z, Liu L, Cao Z, Chai L, Cao G. Higher methylation in genomic DNA indicates in-complete reprogramming in induced pluripotent stem cells. Cell Reprogram, 2013, 15(1): 92–99.
[67] Ma H, Morey R, O'Neil RC, He Y, Daughtry B, Schultz MD, Hariharan M, Nery JR, Castanon R, Sabatini K, Thiagarajan RD, Tachibana M, Kang E, Castanon R, Sabatini K, Thiagarajan RD, Tachibana M, Kang E, Tippner-Hedges R, Ahmed R, Gutierrez NM, Van Dyken C, Polat A, Sugawara A, Sparman M, Gokhale S, Amato P, Wolf DP, Ecker JR, Laurent LC, Mitalipov S. Abnormalities in human pluripotent cells due to reprogramming mech?anisms. Nature, 2014, 511(7508): 177–183.
[68] Hikichi T, Ohta H, Wakayama S, Wakayama T. Functional full-term placentas formed from parthenogenetic embryos using serial nuclear transfer. Development, 2010, 137(17): 2841–2847.
[69] Okae H, Matoba S, Nagashima T, Mizutani E, Inoue K, Ogonuki N, Chiba H, Funayama R, Tanaka S, Yaegashi N, Nakayama K, Sasaki H, Ogura A, Arima T. RNA se-quencing-based identification of aberrant imprinting in cloned mice. Hum Mol Genet, 2014, 23(4): 992–1001.
[70] Matoba S, Liu YT, Lu FL, Iwabuchi KA, Shen L, Inoue A, Zhang Y. Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell, 2014, 159(4):1–12. |