[1] 刘浩, 耿春惠, 李瑾, 熊礼宽. 精子表观遗传学调控与男性不育. 中国男科学杂志, 2013, 27(3): 69–72. <\p>
[2] Carrell DT. Epigenetics of the male gamete. Fertil Steril, 2012, 97(2): 267–274. <\p>
[3] Carrell DT, Hammoud SS. The human sperm epigenome and its potential role in embryonic development. Mol Hum Reprod, 2010, 16(1): 37–47. <\p>
[4] Garrido N, Remohi J, Martinez-Conejero JA, Gar-cia-Herrero S, Pellicer A, Meseguer M. Contribution of sperm molecular features to embryo quality and assisted reproduction success. Reprod Biomed Online, 2008, 17(6): 855–865. <\p>
[5] 沈圣, 屈彦纯, 张军. 下一代测序技术在表观遗传学研究中的重要应用及进展. 遗传, 2014, 36(3): 256–275. <\p>
[6] 王瑞娴, 徐建红. 基因组DNA甲基化及组蛋白甲基化. 遗传, 2014, 36(3): 191–199. <\p>
[7] 马克学, 马克世, 席兴字. 表观遗传跨代继承表型研究进展. 遗传, 2014, 36: 1–11. <\p>
[8] 纪梓良, 段永刚, 蔡志明. 精子DNA甲基化异常与男性不育. 医学分子生物学杂志, 2011, 8(5): 455–460. <\p>
[9] Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 2005, 122(6): 947–956. <\p>
[10] Jenkins TG, Carrell DT. Dynamic alterations in the pater-nal epigenetic landscape following fertilization. Front Genet, 2012, 3: 143. <\p>
[11] Ma JY, Liang XW, Schatten H, Sun QY. Active DNA de-methylation in mammalian preimplantation embryos: new insights and new perspectives. Mol Hum Repord, 2012, 18(7): 333–340. <\p>
[12] 杨晓丹, 韩威, 刘峰. DNA甲基化与脊椎动物胚胎发育. 遗传, 2012, 34(9): 1108–1113. <\p>
[13] Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, Sasaki H. Essential role for de novo DNA methyltransferase Dnmt3a in paternaland maternal imprinting. Na-ture, 2004, 429(6994): 900–903. <\p>
[14] Lei H, Oh SP, Okano M, Jüttermann R, Goss KA, Jaenisch R, Li E. De novo DNA cytosine methyltransferase activi-ties in mouse embryonic stem cells. Development, 1996, 122(10): 3195–3205. <\p>
[15] Kelly TL, Li E, Trasler JM. 5-aza-2′-deoxycytidine in-duces alterations in murine spermatogenesis and preg-nancy outcome. J Androl, 2003, 24(6): 822–830. <\p>
[16] Benchaib M, Braun V, Ressnikof D, Lornage J, Durand P, Niveleau A, Guérin JF. Influence of global sperm DNA methylation on IVF results. Hum Reprod, 2005, 20(3): 768–773. <\p>
[17] Kobayashi H, Sato A, Otsu E, Hiura H, Tomatsu C, Utsu-nomiya T, Sasaki H, Yaegashi N, Arima T. Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet, 2007, 16(21): 2542–2551. <\p>
[18] Kobayashi H, Hiura H, John RM, Sato A, Otsu E, Koba-yashi N, Suzuki R, Suzuki F, Hayashi C, Utsunomiya T, Yaegashi N, Arima T. DNA methylation errors at im-printed loci after assisted conception originate in the pa-rental sperm. Eur J Hum Genet, 2009, 17(12): 1582–1591. <\p>
[19] Buiting K, Groß S, Lich C, Gillessen-Kaesbach G, El-Maarri O, Horsthemke B. Epimutations in Prader-Willi and Angelman syndromes: a molecular study of 136 pa-tients with an imprinting defect. Am J Hum Genet, 2003, 72(3): 571–577. <\p>
[20] 宋博研, 朱卫国. 组蛋白甲基化修饰效应分子的研究进展. 遗传, 2011, 33(4): 285–292. <\p>
[21] 葛少钦, 李建忠, 张晓静. 精子发生过程中组蛋白甲基化和乙酰化. 遗传, 2011, 33(9): 939–946. <\p>
[22] 王维, 孟智启, 石放雄. 组蛋白修饰及其生物学效应. 遗传, 2012, 34(7): 810–818. <\p>
[23] Jenuwein T, Allis CD. Translating the histone code. Sci-ence, 2001, 293(5532): 1074–1080. <\p>
[24] Boissonnas CC, Jouannet P, Jammes H. Epigenetic disor-ders and male subfertility. Fertil Steril, 2013, 99(3): 624– 631. <\p>
[25] Kouzarides T. Chromatin modifications and their function. Cell, 2007, 128(4): 693–705. <\p>
[26] Miller D, Paradowska A. Evaluating the localization and DNA binding complexity of histones in mature sperm. Methods Mol Biol, 2013, 927: 459–475. <\p>
[27] Gannon JR, Emery BR, Jenkins TG, Carrell DT. The sperm epigenome: implications for the embryo. Adv Exp Med Biol, 2014, 791: 53–66. <\p>
[28] Hazzouri M, Pivot-Pajot C, Faure AK, Usson Y, Pelletier R, Sèle B, Khochbin S, Rousseaux S. Regulated hyper-acetylation of core histones during mouse spermatogenesis: involvement of histone-deacetylases. Eur J Cell Biol, 2000, 79(12): 950–960. <\p>
[29] van Montfoort APA, Hanssen LLP, de Sutter P, Viville S, Geraedts JPM, de Boer P. Assisted reproduction treatment and epigenetic inheritance. Hum Reprod Update, 2012, 18(2): 171–197. <\p>
[30] Gineitis AA, Zalenskaya IA, Yau PM, Bradbury EM, Zalensky AO. Human sperm telomere-binding complex involves histone H2b and secures telomere membrane at-tachment. J Cell Biol, 2000, 151(7): 1591–1598. <\p>
[31] Gatewood JM, Cook GR, Balhom R, Bradbury EM, Schmid CW. Sequence-specific packaging of DNA in hu-man sperm chromatin. Science, 1987, 236(4804): 962– 964. <\p>
[32] Biermann K, Steger K. Epigenetics in male germ cells. J Androl, 2007, 28(4): 466–480. <\p>
[33] Bui HT, Wakayama S, Mizutani E, Park KK, Kim JH, Van Thuan N, Wakayama T. Essential role of paternal chroma-tin in the regulation of transcriptional activity during mouse preimplantation development. Reproduction, 2011, 141(1): 67–77. <\p>
[34] Arney KL, Bao SQ, Bannister AJ, Kouzarides T, Surani MA. Histone methylation defines epigenetic asymmetry in the mouse zygote. Int J Dev Biol, 2002, 46(3): 317–320. <\p>
[35] Bernstein BE, Mikkelsen TS, Xie XH, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wemiq M, Plath K, Jae-nisch R, Waqschal A, Feil R, Schreiber SL, Lander ES. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 2006, 125(2): 315– 326. <\p>
[36] Fenic I, Hossain HM, Sonnack V, Tchatalbachev S, Thierer F, Trapp J, Failing K, Edler KS, Berqmann M, Junq M, Chakraborty T, Steqer K. In vivo application of histone deacetylase inhibitor trichostatin-a impairs murine male meiosis. J Androl, 2008, 29(2): 172–185. <\p>
[37] Glaser S, Lubitz S, Loveland KL, Ohbo K, Robb L, Schwenk F, Seibler J, Roelliq D, Kranz A, Anastassiadis K, Stewart AF. The histone 3 lysine 4 methyltransferase, Mll2, is only required briefly in development and spermato-genesis. Epigenetics Chromatin, 2009, 2(1): 5. <\p>
[38] Okada Y, Scott G, Ray MK, Mishina Y, Zhang Y. Histone demethylase JHDM2A is critical for Tnp1 and Prm1 tran-scription and spermatogenesis. Nature, 2007, 450(7166): 119–123. <\p>
[39] Hamatani T. Human spermatozoal RNAs. Fertil Steril, 2012, 97(2): 275–281. <\p>
[40] 孟雅楠, 孟丽军, 宋亚娟, 刘美玲, 张秀军. 小RNA分子与精子发生调控. 遗传, 2011, 33(1): 9–16. <\p>
[41] Marcon E, Babak T, Chua G, Hughes T, Moens PB. miRNA and piRNA localization in the male mammalian meiotic nucleus. Chromosome Res, 2008, 16(2): 243–260. <\p>
[42] 杨峰, 易凡, 曹慧青, 杜权, 梁子才. 非编码RNA的研究进展. 遗传, 2014, 36(5): 456-468. <\p>
[43] Hayashi K, Chuva de Sousa Lopes SM, Kaneda M, Tang FC, Hajkova P, Lao KQ, O'Carroll D, Das PP, Ta-rakhovsky A, Miska EA, Surani MA. MicroRNA biogene-sis is required for mouse primordial germ cell develop-ment and spermatogenesis. PLoS ONE, 2008, 3(3): e1738. <\p>
[44] Oatley JM, Avarbock MR, Telaranta AI, Fearon DT, Brin-ster RL. Identifying genes important for spermatogonial stemcell self-renewal and survival. Proc Natl Acad Sci USA, 2006, 103(25): 9524–9529. <\p>
[45] Oatley JM, Avarbock MR, Brinster RL. Glial cell line- derived neurotrophic factor regulation of genes essential for self-renewal of mouse spermatogonial stem cells is dependent on Srcfamily kinase signaling. J Biol Chem, 2007, 282(35): 25842–25851. <\p>
[46] Gonzalez-Herrera IG, Prado-Lourenco L, Pileur F, Conte C, Morin A, Cabon F, Prats H, Vagner S, Bayard F, Audigier S, Prats AC. Testosterone regulates FGF-2 expression during testis maturation by an IRES-dependent transla-tional mechanism. FASEB J, 2006, 20(3): 476–478. <\p>
[47] Tolia NH, Joshua-Tor L. Slicer and the argonautes. Nat Chem Biol, 2007, 3(1): 36–43. <\p>
[48] Dadoune JP. Spermatozoal RNAs: what about their func-tions? Microsc Res Tech, 2009, 72(8): 536–551. <\p>
[49] Martin C, Beaujean N, Brochard V, Audouard C, Zink D, Debey P. Genome restructuring in mouse embryos during reprogramming and early development. Dev Biol, 2006, 292(2): 317–332. <\p>
[50] Rivera RM, Ross JW. Epigenetics in fertilization and preimplantation embryo development. Proq Biophys Mol Biol, 2013, 113(3): 423–432. <\p>
[51] Grifin J. Methods of sperm DNA extraction for genetic and epigenetic studies. Methods Mol Biol, 2013, 927: 379– 384. <\p>
[52] Maatouk DM, Loveland KL, McManus MT, Moore K, Harfe BD. Dicer1 is required for differentiation of the mouse male germline. Biol Reprod, 2008, 79(4): 696–703. <\p>
[53] Aoki VW, Emery BR, Liu L, Carrell DT. Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. J Androl, 2006, 27(6): 890–898. <\p>
[54] Rodman TC, Pruslin FH, Hoffmann HP, Allfrey VG. Turnover of basic chromosomal proteins in fertilized eggs: a cytoimmunochemical study of events in vivo. J Cell Biol, 1981, 90(2): 351–361. <\p>
[55] Nonchev S, Tsanev R. Protamine-histone replacement and DNA replication in the male mouse pronucleus. Mol Re-prod Dev, 1990, 25(1): 72–76. <\p>
[56] Shimada A, Kikuchi K, Noguchi J, Akama K, Nakano M, Kaneko H. Protamine dissociation before decondensation of sperm nuclei during in vitro fertilization of pig oocytes. J Reprod Fertil, 2000, 120(2): 247–256. <\p>
[57] Nakazawa Y, Shimada A, Noguchi J, Domeki I, Kaneko H, Kikuchi K. Replacement of nuclear protein by histone in pig sperm nuclei during in vitro fertilization. Reproduction, 2002, 124(4): 565–572. <\p>
[58] Jones EL, Zalensky AO, Zalenskaya IA. Protamine with-drawal from human sperm nuclei following heterologous ICSI into hamster oocytes. Protein Pept Lett, 2011, 18(8): 811–816. <\p>
[59] Carrell DT, Emery BR, Hammoud S. The aetiology of sperm protamine abnormalities and their potential impact on the sperm epigenome. Int J Androl, 2008, 31(6): 537–545. <\p>
[60] Chevaillier P, Mauro N, Feneux D, Jouannet P, David G. Anomalous protein complement of sperm nuclei in some infertile men. Lancet, 1987, 330(8562): 806–807. <\p>
[61] Aoki VW, Christensen GL, Atkins JF, Carrell DT. Identi-fication of novel polymorphisms in the nuclear protein genes and their relationship with human sperm protamine deficiency and severe male infertility. Fertil Steril, 2006, 86(5): 1416–1422. <\p>
[62] De Rycke M, Liebaers I, Van Steirteghem A. Epigenetic risks related to assisted reproductive technologies: risk analysis and epigenetic inheritance. Hum Reprod, 2002, 17(10): 2487–2494. <\p>
[63] 杨滨, 夏欣一, 黄宇烽, 许晓风. 精子的表观遗传学研究进展. 中华男科学杂志, 2007, 13(12): 1125–1129. <\p>
[64] Georgiou I, Syrrou M, Pardalidis N, Karakitsios K, Mantzavinos T, Giotitsas N, Loutradis D, Dimitriadis F, Saito M, Miyagawa I, Tzoumis P, Sylakos A, Kanakas N, Moustakareas T, Baltogiannis D, Touloupides S, Giannakis D, Fatouros M, Sofikitis N. Genetic and epigenetic risks of intracytoplasmic sperm injection method. Asian J Androl, 2006, 8(6): 643–673. <\p>
[65] Nanassy L, Carrell DT. Paternal effects on early embryo-genesis. J Exp Clin Assist Reprod, 2008, 5: 2. <\p>
[66] Oliva R, Ballescà JL. Altered histone retention and epige-netic modifications in the sperm of infertile men. Asian J Androl, 2012, 14(2): 239–240. <\p>
[67] Mehta A, Sigman M. Identification and preparation of sperm for ART. Urol Clin North Am, 2014, 41(1): 169– 180.<\p> |