遗传 ›› 2014, Vol. 36 ›› Issue (5): 403-410.doi: 10.3724/SP.J.1005.2014.0403
• 综述 • 下一篇
邓大君
收稿日期:
2014-01-07
修回日期:
2014-01-27
出版日期:
2014-05-20
发布日期:
2014-04-25
通讯作者:
邓大君,教授,研究方向:肿瘤病因学和DNA甲基化研究。E-mail:dengdajun@bjmu.edu.cn
E-mail:dengdajun@bjmu.edu.cn
作者简介:
邓大君,教授,研究方向:肿瘤病因学和DNA甲基化研究。E-mail:dengdajun@bjmu.edu.cn
基金资助:
国家自然科学基金项目(编号:30921140311,31261140372)资助
Dajun Deng
Received:
2014-01-07
Revised:
2014-01-27
Online:
2014-05-20
Published:
2014-04-25
Contact:
Dajun Deng
E-mail:dengdajun@bjmu.edu.cn
摘要:
DNA甲基化通过调节基因转录、印记、X染色体灭活和防御外源性遗传物质入侵等, 在细胞分化、胚胎发育、环境适应和疾病发生发展上发挥重要作用, 是当前表观遗传学研究的热点领域之一。文章介绍了在过去几年中TET介导的DNA羟甲基化及其在早期胚胎发育中的作用, DNA主动去甲基化及其与被动去甲基化的关系, DNA甲基化建立及其与组蛋白修饰、染色质构象、多梳蛋白和非编码RNA结合等关系方面的重要研究进展和存在的问题以及DNA甲基化的转化应用前景。
邓大君. DNA甲基化和去甲基化的研究现状及思考[J]. 遗传, 2014, 36(5): 403-410.
Dajun Deng. DNA methylation and demethylation: current status and future per-spective[J]. HEREDITAS(Beijing), 2014, 36(5): 403-410.
[1] Marinus MG, Casadesus J. Roles of DNA adenine methy-lation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more. FEMS Microbiol Rev, 2009, 33(3): 488–503. <\p> [2] Chatti A, Landoulsi A. The DNA-methylation state regu-lates virulence and stress response of Salmonella. C R Biol, 2008, 331(9): 648–654. <\p> [3] Collier J. Epigenetic regulation of the bacterial cell cycle. Curr Opin Microbiol, 2009, 12(6): 722–729. <\p> [4] Saya Kagiwada, Kazuki Kurimoto, Takayuki Hirota, Ma-sashi Yamaji and Mitinori Saitou. Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice. EMBO J, 2012, 32: 340–353. <\p> [5] Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD, Varela I, Lin ML, Ordóñez GR, Bignell GR, Ye K, Alipaz J, Bauer MJ, Beare D, But-ler A, Carter RJ, Chen L, Cox AJ, Edkins S, Kokko- Gonzales PI, Gormley NA, Grocock RJ, Haudenschild CD, Hims MM, James T, Jia M, Kingsbury Z, Leroy C, Mar-shall J, Menzies A, Mudie LJ, Ning Z, Royce T, Schulz- Trieglaff OB, Spiridou A, Stebbings LA, Szajkowski L, Teague J, Williamson D, Chin L, Ross MT, Campbell PJ, Bentley DR, Futreal PA, Stratton MR. A comprehensive catalogue of somatic mutations from a human cancer ge-nome. Nature, 2010, 463(7278): 191–196. <\p> [6] Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Bør-resen-Dale AL, Boyault S, Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Eils R, Eyfjörd JE, Foekens JA, Greaves M, Hosoda F, Hutter B, Ilicic T, Imbeaud S, Imielinsk M, Jäger N, Jones DT, Jones D, Knappskog S, Kool M, Lakhani SR, López-Otín C, Martin S, Munshi NC, Nakamura H, Northcott PA, Pajic M, Papaemmanuil E, Paradiso A, Pearson JV, Puente XS, Raine K, Ramakrishna M, Richardson AL, Richter J, Rosenstiel P, Schlesner M, Schumacher TN, Span PN, Teague JW, Totoki Y, Tutt AN, Valdés-Mas R, van Buuren MM, van 't Veer L, Vin-cent-Salomon A, Waddell N, Yates LR, Australian Pancre-atic Cancer Genome Initiative, ICGC Breast Cancer Con-sortium, ICGC MMML-Seq Consortium, ICGC PedBrain, Zucman-Rossi J, Futreal PA, McDermott U, Lichter P, Meyerson M, Grimmond SM, Siebert R, Campo E, Shibata T, Pfister SM, Campbell PJ, Stratton MR. Signatures of mutational processes in human cancer. Nature, 2013, 500(7463): 415–421. <\p> [7] Popp C, Dean W, Feng S, Cokus SJ, Andrews S, Pellegrini M, Jacobsen SE, Reik W. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature, 2010, 463: 1101–1105. <\p> [8] Kriaucionis S, Heintz N. The nuclear DNA base 5- hy-droxymethylcytosine is present in purkinje neurons and the brain. Science, 2009, 324(5929): 929–930. <\p> [9] Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 2009, 324(5929): 930–935. <\p> [10] He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, Dai Q, Song CX, Zhang K, He C, Xu GL. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science, 2011, 333(6047): 1303–1307. <\p> [11] Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science, 2011, 333(6047): 1300–1303. <\p> [12] Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W, Xie ZG, Shi L, He X, Jin SG, Iqbal K, Shi YG, Deng Z, Szabó PE, Pfeifer GP, Li J, Xu GL. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature, 2011, 477(7366): 606–610. <\p> [13] Williams K, Christensen J, Pedersen MT, Johansen JV, Cloos PA, Rappsilber J, Helin K. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature, 2011, 473(7347): 343–348. <\p> [14] Hackett JA, Sengupta R, Zylicz JJ, Murakami K, Lee C, Down TA, Surani MA. Germline DNA demethylation dy-namics and imprint erasure through 5-hydroxymethylcytosine. Science, 2013, 339(6118): 448–452. <\p> [15] Costa Y, Ding J, Theunissen TW, Faiola F, Hore TA, Shliaha PV, Fidalgo M, Saunders A, Lawrence M, Dietmann S, Das S, Levasseur DN, Li Z, Xu M, Reik W, Silva JCR, Wang J. NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature, 2013, 495(7441): 370–374. <\p> [16] Jiang L, Zhang J, Wang JJ, Wang L, Zhang L, Li G, Yang X, Ma X, Sun X, Cai J, Zhang J, Huang X, Yu M, Wang X, Liu F, Wu CI, He C, Zhang B, Ci W, Liu J. Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos. Cell, 2013, 153(4): 773–784. <\p> [17] Potok ME, Nix DA, Parnell TJ, Cairns BR. Reprogram-ming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell, 2013, 153(4): 759–772. <\p> [18] Almeida RD, Loose M, Sottile V, Matsa E, Denning C, Young L, Johnson AD, Gering M, Ruzov A. 5-hydroxymethyl-cytosine enrichment of non-committed cells is not a universal feature of vertebrate development. Epigenetics, 2012, 7(4): 383–389. <\p> [19] Smith ZD, Chan MM, Mikkelsen TS, Gu H, Gnirke A, Regev A, Meissner A. A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature, 2012, 484(7394): 339–344. <\p> [20] Chen CC, Wang KY, Shen CK. The mammalian de novo DNA methyltransferases DNMT3A and DNMT3B are also DNA 5-hydroxymethylcytosine dehydroxymethylases. J Biol Chem, 2012, 287(40): 33116–33121. <\p> [21] Qian W, Miki D, Zhang H, Liu Y, Zhang X, Tang K, Kan Y, La H, Li X, Li S, Zhu X, Shi X, Zhang K, Pontes O, Chen X, Liu R, Gong Z, Zhu JK. A histone acetyltransferase regulates active DNA demethylation in Arabidopsis. Sci-ence, 2012, 336: 1445–1448. <\p> [22] Haffner MC, Pellakuru LG, Ghosh S, Lotan TL, Nelson WG, De Marzo AM, Yegnasubramanian S. Tight correla-tion of 5-hydroxymethylcytosine and Polycomb marks in health and disease. Cell Cycle, 2013, 12(12): 1835–1841. <\p> [23] Shimoda N, Izawa T, Yoshizawa A, Yokoi H, Kikuchi Y, Hashimoto N. Decrease in cytosine methylation at CpG island shores and increase in DNA fragmentation during zebrafish aging. Age (Dordr), 2014, 36(1): 103–115. <\p> [24] Bhattacharyya S, Yu Y, Suzuki M, Campbell N, Mazdo J, Vasanthakumar A, Bhagat TD, Nischal S, Christopeit M, Parekh S, Steidl U, Godley L, Maitra A, Greally JM, Verma A. Genome-wide hydroxymethylation tested using the HELP-GT assay shows redistribution in cancer. Nu-cleic Acids Res, 2013, 1(16): e157. <\p> [25] Thaler R, Spitzer S, Karlic H, Klaushofer K, Varga F. DMSO is a strong inducer of DNA hydroxymethylation in pre-osteoblastic MC3T3-E1 cells. Epigenetics, 2012, 7(6): 635–651. <\p> [26] Blaschke K, Ebata KT, Karimi MM, Zepeda-Martínez JA, Goyal P, Mahapatra S, Tam A, Laird DJ, Hirst M, Rao A, Lorincz MC, Ramalho-Santos M. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature, 2013, 500(7461): 222–226. <\p> [27] Thomson JP, Hunter JM, Lempiäinen H, Müller A, Ter-ranova R, Moggs JG, Meehan RR. Dynamic changes in 5-hydroxymethylation signatures underpin early and late events in drug exposed liver. Nucleic Acids Res, 2013, 41(11): 5639–5654. <\p> [28] Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441): 384–388. <\p> [29] Yap KL, Li SD, Muñoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ, Zhou MM. Molecular inter-play of the noncoding RNA ANRIL and methylated his-tone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell, 2010, 38(5): 662–674. <\p> [30] Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 2010, 464(7291): 1071–1076. <\p> [31] Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, Attardi LD, Regev A, Lander ES, Jacks T, Rinn JL. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell, 2010, 142: 409–419. <\p> [32] Zhao J, Ohsumi TK, Kung JT, Ogawa Y, Grau DJ, Sarma K, Song JJ, Kingston RE, Borowsky M, Lee JT. Ge-nome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell, 2010, 40: 939–953. <\p> [33] Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs. Nature, 2012, 482(7385): 339–346. <\p> [34] Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature, 2010, 465(7301): 1033–1038. <\p> [35] Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, Kar-reth F, Poliseno L, Provero P, Di Cunto F, Lieberman J, Rigoutsos I, Pandolfi PP. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell, 2011, 147(2): 344–357. <\p> [36] Di Ruscio A, Ebralidze AK, Benoukraf T, Amabile G, Goff LA, Terragni J, Figueroa ME, De Figueiredo Pontes LL, Alberich-Jorda M, Zhang P, Wu M, D'Alò F, Melnick A, Leone G, Ebralidze KK, Pradhan S, Rinn JL, Tenen DG. DNMT1-interacting RNAs block gene-specific DNA me-thylation. Nature, 2013, 503(7476): 371–376. <\p> [37] Hu JL, Zhou BO, Zhang RR, Zhang KL, Zhou JQ, Xu GL. The N-terminus of histone H3 is required for de novo DNA methylation in chromatin. Proc Natl Acad Sci USA, 2009, 106(52): 22187–22192. <\p> [38] Li BZ, Huang Z, Cui QY, Song XH, Du L, Jeltsch A, Chen P, Li G, Li E, Xu GL. Histone tails regulate DNA methylation by allosterically activating de novo me-thyltransferase. Cell Res, 2011, 21(8): 1172–1181. <\p> [39] The ENCODE Project Consortium. An integrated en-cyclopedia of DNA elements in the human genome. Nature, 2012, 489(7414): 57–74. <\p> [40] Lu ZM, Zhou J, Wang X, Guan Z, Bai H, Liu ZJ, Su N, Pan K, Ji J, Deng D. Nucleosomes correlate with in vivo progression pattern of de novo methylation of p16 CpG islands in human gastric carcinogenesis. PLoS ONE, 2012, 7(4): e35928. <\p> [41] Wu LP, Wang X, Li L, Zhao Y, Lu S, Yu Y, Zhou W, Liu X, Yang J, Zheng Z, Zhang H, Feng J, Yang Y, Wang H, Zhu WG. Histone deacetylase inhibitor depsipeptide activates silenced genes through decreasing both CpG and H3K9 methylation on the promoter. Mol Cell Biol, 2008, 28(10): 3219–3235. <\p> [42] Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature, 2011, 473(7347): 398–402. <\p> [43] Sun Z, Terragni J, Borgaro JG, Liu Y, Yu L, Guan S, Wang H, Sun D, Cheng X, Zhu Z, Pradhan S, Zheng Y. High-resolution enzymatic mapping of genomic 5-hydroxymethylcytosine in mouse embryonic stem cells. Cell Rep, 2013, 3(2): 567–576. <\p> [44] Ruzov A, Tsenkina Y, Serio A, Dudnakova T, Fletcher J, Bai Y, Chebotareva T, Pells S, Hannoun Z, Sullivan G, Chandran S, Hay DC, Bradley M, Wilmut I, De Sousa P. Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development. Cell Res, 2011, 21(9): 1332–1342. <\p> [45] Deng DJ, Liu ZJ, Du YT. Epigenetic alterations as cancer diagnostic, prognostic, and predictive biomarkers. Adv Genet, 2010, 71: 125–176.<\p> |
[1] | 张競文,续倩,李国亮. 癌症发生发展中的表观遗传学研究[J]. 遗传, 2019, 41(7): 567-581. |
[2] | 马志鹏, 陈军. 无义突变与“遗传补偿效应”[J]. 遗传, 2019, 41(5): 359-364. |
[3] | 黄鑫,陈永强,徐国良,彭淑红. 脂肪组织DNA甲基化与糖尿病和肥胖的发生发展[J]. 遗传, 2019, 41(2): 98-110. |
[4] | 潘云枫, 王演怡, 陈静雯, 范怡梅. 线粒体代谢介导的表观遗传改变与衰老研究[J]. 遗传, 2019, 41(10): 893-904. |
[5] | 鞠君毅,赵权. γ-珠蛋白基因表达调控机制与临床应用[J]. 遗传, 2018, 40(6): 429-444. |
[6] | 袁力, 李艺柔, 徐小冬. 时间生物学—2017年诺贝尔生理或医学奖解读[J]. 遗传, 2018, 40(1): 1-11. |
[7] | 岳敏, 杨禹, 郭改丽, 秦曦明. 哺乳动物生物钟的遗传和表观遗传研究进展[J]. 遗传, 2017, 39(12): 1122-1137. |
[8] | 刘辰东, 杨露, 蒲红州, 杨琼, 黄文耀, 赵雪, 朱砺, 张顺华. 运动对骨骼肌基因表达的表观遗传调控作用[J]. 遗传, 2017, 39(10): 888-896. |
[9] | 张轲, 冯光德, 张宝云, 向伟, 陈龙, 杨芳, 储明星, 王凭青. 表观遗传标记在猪分子育种中的研究与应用前景[J]. 遗传, 2016, 38(7): 634-643. |
[10] | 李元丰, 韩玉波, 曹鹏博, 孟金凤, 李海北, 秦庚, 张锋, 靳光付, 杨勇, 邬玲仟, 平杰, 周钢桥. 2015年中国医学遗传学研究领域若干重要进展[J]. 遗传, 2016, 38(5): 363-390. |
[11] | 张笑, 贾桂芳. RNA表观遗传修饰:N6-甲基腺嘌呤[J]. 遗传, 2016, 38(4): 275-288. |
[12] | 方科, 张凯翔, 王建, 付志猛, 赵湘辉. 表观遗传学新标记--5-羟甲基胞嘧啶检测方法的研究进展[J]. 遗传, 2016, 38(3): 206-216. |
[13] | 朱屹然,张美玲,翟志超,赵云蛟,马馨. 生殖细胞及早期胚胎基因组印记的表观调控[J]. 遗传, 2016, 38(2): 103-108. |
[14] | 刘姝丽,张胜利,俞英. 同卵双胞胎在复杂性状DNA甲基化调控机制研究中的应用[J]. 遗传, 2016, 38(12): 1043-1055. |
[15] | 刘洋洋, 崔恒宓. DNA甲基化分析中重亚硫酸盐处理DNA转化效率的评估方法[J]. 遗传, 2015, 37(9): 939-944. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: