遗传 ›› 2014, Vol. 36 ›› Issue (3): 256-275.doi: 10.3724/SP.J.1005.2014.0256
沈圣, 屈彦纯, 张军
收稿日期:
2013-10-16
修回日期:
2013-12-07
出版日期:
2014-03-20
发布日期:
2014-02-25
通讯作者:
张军, 博士, 教授, 研究方向:分子遗传。E-mail: jun.zhang2000@gmail.com
E-mail:jun.zhang2000@gmail.com
作者简介:
沈圣, 博士, 研究方向:分子遗传。E-mail: saint_ss@163.com
基金资助:
美国国立神经病与中风研究所/美国国立卫生院及Coldwell基金会项目资助
Sheng Shen, Yanchun Qu, Jun Zhang
Received:
2013-10-16
Revised:
2013-12-07
Online:
2014-03-20
Published:
2014-02-25
摘要:
下一代测序技术(Next generation sequencing, NGS)的出现, 极大地促进了表观遗传学的研究。将NGS技术引入表观遗传学, 便形成了以NGS为基础的各种表观遗传学测序及研究方法, 如:全基因组亚硫酸氢盐测序法(Whole genome bisulfite sequencing, WGBS)、简化代表性亚硫酸氢盐测序法(Reduced representation bisulfite sequencing, RRBS)、甲基化DNA免疫共沉淀测序(Methylated DNA immunoprecipitationsequencing, MeDIP-seq)、染色质免疫共沉淀测序(Chromatin immunoprecipitation-sequencing, ChIP-seq)、Tet辅助重亚硫酸盐测序法(Tet-assisted bisulfite sequencing, TAB-seq)、各种染色体构象捕获测序(Chromosome conformation capture se-quencing, 3C-seq)技术、DnaseⅠ-seq/MNase-seq/FAIRE-seq以及RNA测序(RNA sequencing, RNA-seq)。这些方法的应用和普及改变了人们对多种表观遗传现象的传统认识, 使研究人员能够更加全面地深入了解各种表观遗传标志在机体内的广泛分布, 以及如何在外界因素的影响下发生相应的动态变化。文章概述了当今主要商业NGS平台的原理和特点, 系统介绍了以NGS方法为基础衍生出来的各种表观遗传学测序及研究方法, 并在此基础上对近年来应用NGS技术在表观遗传学研究领域中取得的最新研究成果进行了综述。
沈圣, 屈彦纯, 张军. 下一代测序技术在表观遗传学研究中的重要应用及进展[J]. 遗传, 2014, 36(3): 256-275.
Sheng Shen, Yanchun Qu, Jun Zhang. The application of next generation sequencing on epigenetic study[J]. HEREDITAS, 2014, 36(3): 256-275.
[1] Waddington CH. The epigenotype. 1942. Int J Epidemiol, 2012, 41(1): 10–13. <\p> [2] Jaenisch R, Bird A. Epigenetic regulation of gene expres-sion: how the genome integrates intrinsic and environ-mental signals. Nat Genet, 2003, 33(Suppl.): 245–254. <\p> [3] Bird A. Perceptions of epigenetics. Nature, 2007, 447 (7143): 396–398. <\p> [4] Ziller MJ, Gu HC, Muller F, Donaghey J, Tsai LTY, Kohlbacher O, De Jager PL, Rosen ED, Bennett DA, Bernstein BE, Gnirke A, Meissner A. Charting a dynamic DNA methylation landscape of the human genome. Nature, 2013, 500(7463): 477–481. <\p> [5] Fu BS, Wang HW, Wang JH, Barouhas I, Liu WQ, Shuboy A, Bushinsky DA, Zhou DS, Favus MJ. Epigenetic regu-lation of BMP2 by 1, 25-dihydroxyvitamin D3 through DNA methylation and histone modification. PLoS ONE, 2013, 8(4): e61423. <\p> [6] Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, Fan GP, Sun YE. DNA methylation-related chromatin re-modeling in activity-dependent Bdnf gene regulation. Sci-ence, 2003, 302(5646): 890–893. <\p> [7] Cruickshanks HA, Vafadar-Isfahani N, Dunican DS, Lee A, Sproul D, Lund JN, Meehan RR, Tufarelli C. Expression of a large LINE-1-driven antisense RNA is linked to epi-genetic silencing of the metastasis suppressor gene TFPI-2 in cancer. Nucleic Acids Res, 2013, 41(14): 6857–6869. <\p> [8] Andolfo I, Liguori L, De Antonellis P, Cusanelli E, Mari-naro F, Pistollato F, Garzia L, De Vita G, Petrosino G, Ac-cordi B, Migliorati R, Basso G, Iolascon A, Cinalli G, Zollo M. The micro-RNA 199b-5p regulatory circuit in-volves Hes1, CD15, and epigenetic modifications in me-dulloblastoma. Neuro Oncol, 2012, 14(5): 596–612. <\p> [9] Bastet L, Dubé A, Massé E, Lafontaine DA. New insights into riboswitch regulation mechanisms. Mol Microbiol, 2011, 80(5): 1148–1154. <\p> [10] Voelkerding KV, Dames SA, Durtschi JD. Next-generation sequencing: from basic research to diagnostics. Clin Chem, 2009, 55(4): 641–658. <\p> [11] Mardis ER. A decade's perspective on DNA sequencing technology. Nature, 2011, 470(7333): 198–203. <\p> [12] Metzker ML. Sequencing technologies - the next genera-tion. Nat Rev Genet, 2010, 11(1): 31–46. <\p> [13] Taylor KH, Kramer RS, Davis JW, Guo JY, Duff DJ, Xu D, Caldwell CW, Shi HD. Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res, 2007, 67(18): 8511–8518. <\p> [14] Barski A, Cuddapah S, Cui KR, Roh TY, Schones DE, Wang ZB, Wei G, Chepelev I, Zhao KJ. High-resolution profiling of histone methylations in the human genome. Cell, 2007, 129(4): 823–837. <\p> [15] Mikkelsen TS, Ku MC, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O'Donovan A, Presser A, Russ C, Xie XH, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 2007, 448(7153): 553–560. <\p> [16] Hurd PJ, Nelson CJ. Advantages of next-generation se-quencing versus the microarray in epigenetic research. Brief Funct Genomic Proteomic, 2009, 8(3): 174–183. <\p> [17] Feinberg AP, Gehrke CW, Kuo KC, Ehrlich M. Reduced genomic 5-methylcytosine content in human colonic neo-plasia. Cancer Res, 1988, 48(5): 1159–1161. <\p> [18] Ogino S, Nosho K, Kirkner GJ, Kawasaki T, Chan AT, Schernhammer ES, Giovannucci EL, Fuchs CS. A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer. J Natl Cancer Inst, 2008, 100(23): 1734–1738. <\p> [19] He XJ, Chen TP, Zhu JK. Regulation and function of DNA methylation in plants and animals. Cell Res, 2011, 21(3): 442–465. <\p> [20] Hajkova P, Jeffries SJ, Lee C, Miller N, Jackson SP, Surani MA. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science, 2010, 329(5987): 78–82. <\p> [21] Iqbal K, Jin SG, Pfeifer GP, Szabo PE. Reprogramming of the paternal genome upon fertilization involves ge-nome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci USA, 2011, 108(9): 3642–3647. <\p> [22] Wossidlo M, Nakamura T, Lepikhov K, Marques CJ, Zak-hartchenko V, Boiani M, Arand J, Nakano T, Reik W, Walter J. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun, 2011, 2: 241. <\p> [23] Laird PW. Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet, 2010, 11(3): 191–203. <\p> [24] Suzuki MM, Bird A. DNA methylation landscapes: pro-vocative insights from epigenomics. Nat Rev Genet, 2008, 9(6): 465–476. <\p> [25] Esteller M. Molecular origins of cancer: Epigenetics in cancer. New Engl J Med, 2008, 358(11): 1148–1159. <\p> [26] Rodríguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med, 2011, 17(3): 330– 339. <\p> [27] Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet, 2007, 8(4): 286–298. <\p> [28] Jones PA, Baylin SB. The epigenomics of cancer. Cell, 2007, 128(4): 683–692. <\p> [29] Ito S, D'Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature, 2010, 466(7310): 1129–1133. <\p> [30] Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 2009, 324(5929): 930–935. <\p> [31] Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in purkinje neurons and the brain. Science, 2009, 324(5929): 929–930. <\p> [32] Huang Y, Pastor WA, Shen YH, Tahiliani M, Liu DR, Rao A. The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS ONE, 2010, 5(1): e8888. <\p> [33] Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature, 2011, 473(7347): 398–402. <\p> [34] Zhang F, Tsunoda M, Suzuki K, Kikuchi Y, Wilkinson O, Millington CL, Margison GP, Williams DM, Morishita EC, Takenaka A. Structures of DNA duplexes containing O6-carboxymethylguanine, a lesion associated with gas-trointestinal cancer, reveal a mechanism for inducing pyrimidine transition mutations. Nucleic Acids Res, 2013, 41(10): 5524–5532. <\p> [35] Swanson AL, Wang JS, Wang YS. In vitro replication studies of carboxymethylated DNA lesions with Sac-charomyces cerevisiae polymerase ?. Biochemistry, 2011, 50(35): 7666–7673. <\p> [36] Lennartsson A, Ekwall K. Histone modification patterns and epigenetic codes. Biochim Biophys Acta, 2009, 1790(9): 863–868. <\p> [37] Martin C, Zhang Y. Mechanisms of epigenetic inheritance. Curr Opin Cell Biol, 2007, 19(3): 266–272. <\p> [38] Ruthenburg AJ, Li HT, Patel DJ, Allis CD. Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol, 2007, 8(12): 983–994. <\p> [39] Tan MJ, Luo H, Lee S, Jin FL, Yang JS, Montellier E, Buchou T, Cheng ZY, Rousseaux S, Rajagopal N, Lu ZK, Ye Z, Zhu Q, Wysocka J, Ye Y, Khochbin S, Ren B, Zhao YM. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell, 2011, 146(6): 1016–1028. <\p> [40] Zhang ZH, Tan MJ, Xie ZY, Dai LZ, Chen Y, Zhao YM. Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol, 2011, 7(1): 58–63. <\p> [41] Peng C, Lu ZK, Xie ZY, Cheng ZY, Chen Y, Tan MJ, Luo H, Zhang Y, He W, Yang K, Zwaans BMM, Tishkoff D, Ho L, Lombard D, He TC, Dai JB, Verdin E, Ye Y, Zhao YM. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics, 2011, 10(12): M111.012658. <\p> [42] Kouzarides T. Chromatin modifications and their function. Cell, 2007, 128(4): 693–705. <\p> [43] Wysocka J, Swigut T, Milne TA, Dou Y, Zhang X, Burlin-game AL, Roeder RG, Brivanlou AH, Allis CD. WDR5 associates with histone H3 methylated at K4 and is essen-tial for H3 K4 methylation and vertebrate development. Cell, 2005, 121(6): 859–872. <\p> [44] Wysocka J, Swigut T, Xiao H, Milne TA, Kwon SY, Landry J, Kauer M, Tackett AJ, Chait BT, Badenhorst P, Wu C, Allis CD. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature, 2006, 442(7098): 86–90. <\p> [45] Glukhov SI, Rubtsov MA, Alexeyevsky DA, Alexeevski AV, Razin SV, Iarovaia OV. The broken MLL gene is fre-quently located outside the inherent chromosome territory in human lymphoid cells treated with DNA topoisomerase II poison etoposide. Plos ONE, 2013, 8(9): e75871. <\p> [46] Imhof A. Epigenetic regulators and histone modification. Brief Funct Genomic Proteomic, 2006, 5(3): 222–227. <\p> [47] Albert B, Mathon J, Shukla A, Saad H, Normand C, Léger-Silvestre I, Villa D, Kamgoue A, Mozziconacci J, Wong H, Zimmer C, Bhargava P, Bancaud A, Gadal O. Systematic characterization of the conformation and dy-namics of budding yeast chromosome XII. Journal of Cell Biology, 2013, 202(2): 201–210. <\p> [48] Floutsakou I, Agrawal S, Nguyen TT, Seoighe C, Ganley AR, McStay B. The shared genomic architecture of human nucleolar organizer regions. Genome Res, 2013, 23(12): 2003–2012. <\p> [49] Langowski J. Chromosome conformation by crosslinking: Polymer physics matters. Nucleus-Austin, 2010, 1(1): 37– 39. <\p> [50] Keller C, Buhler M. Chromatin-associated ncRNA activi-ties. Chromosome Res, 2013, 21(6-7): 627–641. <\p> [51] Qu Z, Adelson DL. Evolutionary conservation and func-tional roles of ncRNA. Front Genet, 2012, 3: 205. <\p> [52] Hacisuleyman E, Cabili MN, Rinn JL. A Keystone for ncRNA. Genome Biol, 2012, 13(5): 315. <\p> [53] Flynt AS, Lai EC. Biological principles of microRNA- mediated regulation: shared themes amid diversity. Nat Rev Genet, 2008, 9(11): 831–842. <\p> [54] Croce CM. Causes and consequences of microRNA dys-regulation in cancer. Nat Rev Genet, 2009, 10(10): 704–714. <\p> [55] Papageorgiou N, Tousoulis D, Androulakis E, Siasos G, Briasoulis A, Vogiatzi G, Kampoli AM, Tsiamis E, Ten-tolouris C, Stefanadis C. The role of microRNAs in car-diovascular disease. Curr Med Chem, 2012, 19(16): 2605–2610. <\p> [56] Jopling C. Liver-specific microRNA-122: Biogenesis and function. RNA Biol, 2012, 9(2): 137–142. <\p> [57] Hughes S, Jones JL. The use of multiple displacement amplified DNA as a control for methylation specific PCR, pyrosequencing, bisulfite sequencing and methylation- sensitive restriction enzyme PCR. BMC Mol Biol, 2007, 8: 91. <\p> [58] Dhayalan A, Rajavelu A, Rathert P, Tamas R, Jurkowska RZ, Ragozin S, Jeltsch A. The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. J Biol Chem, 2010, 285(34): 26114–26120. <\p> [59] Li BZ, Huang Z, Cui QY, Song XH, Du L, Jeltsch A, Chen P, Li GH, Li E, Xu GL. Histone tails regulate DNA me-thylation by allosterically activating de novo methyltransferase. Cell Res, 2011, 21(8): 1172–1181. <\p> [60] Hawkins RD, Hon GC, Lee LK, Ngo Q, Lister R, Peliz-zola M, Edsall LE, Kuan S, Luu Y, Klugman S, Anto-siewicz-Bourget J, Ye Z, Espinoza C, Agarwahl S, Shen L, Ruotti V, Wang W, Stewart R, Thomson JA, Ecker JR, Ren B. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell, 2010, 6(5): 479–491. <\p> [61] Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O'Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R, Ren B, Thomson JA, Evans RM, Ecker JR. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature, 2011, 471(7336): 68–73. <\p> [62] van Steensel B. Chromatin: constructing the big picture. Embo J, 2011, 30(10): 1885–1895. <\p> [63] Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR. Human DNA methylomes at base resolution show widespread epigenomic differ-ences. Nature, 2009, 462(7271): 315–322. <\p> [64] Li YR, Zhu JD, Tian G, Li N, Li QB, Ye MZ, Zheng HC, Yu JA, Wu HL, Sun JH, Zhang HY, Chen QA, Luo RB, Chen MF, He YH, Jin X, Zhang QH, Yu C, Zhou GY, Sun JF, Huang YB, Zheng HS, Cao HZ, Zhou XY, Guo SC, Hu XD, Li X, Kristiansen K, Bolund L, Xu JJ, Wang W, Yang HM, Wang JA, Li RQ, Beck S, Wang J, Zhang XQ. The DNA methylome of human peripheral blood mononuclear cells. PloS Biol, 2010, 8(11): e1000533. <\p> [65] Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, Burton J, Cox TV, Davies R, Down TA, Hae-fliger C, Horton R, Howe K, Jackson DK, Kunde J, Koenig C, Liddle J, Niblett D, Otto T, Pettett R, Seemann S, Thompson C, West T, Rogers J, Olek A, Berlin K, Beck S. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet, 2006, 38(12): 1378–1385. <\p> [66] Johnson MD, Mueller M, Game L, Aitman TJ. Single nu-cleotide analysis of cytosine methylation by whole- genome shotgun bisulfite sequencing. Curr Protoc Mol Biol, 2012, Chapter 21: Unit21 23. <\p> [67] Adey A, Shendure J. Ultra-low-input, tagmentation-based whole-genome bisulfite sequencing. Genome Res, 2012, 22(6): 1139–1143. <\p> [68] Jeddeloh JA, Greally JM, Rando OJ. Reduced-representation methylation mapping. Genome Biol, 2008, 9(8): 231. <\p> [69] Xi YX, Bock C, Müller F, Sun DQ, Meissner A, Li W. RRBSMAP: a fast, accurate and user-friendly alignment tool for reduced representation bisulfite sequencing. Bio-informatics, 2012, 28(3): 430–432. <\p> [70] Wang L, Sun JH, Wu HL, Liu SY, Wang JW, Wu BX, Huang SJ, Li N, Wang J, Zhang XQ. Systematic assess-ment of reduced representation bisulfite sequencing to human blood samples: A promising method for large- sample-scale epigenomic studies. J Biotechnol, 2012, 157(1): 1–6. <\p> [71] Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res, 2005, 33(18): 5868–5877. <\p> [72] Wang JW, Xia YD, Li LL, Gong DS, Yao Y, Luo HJ, Lu HL, Yi N, Wu HL, Zhang XQ, Tao Q, Gao F. Double re-striction-enzyme digestion improves the coverage and ac-curacy of genome-wide CpG methylation profiling by re-duced representation bisulfite sequencing. BMC Genomics, 2013, 14: 11. <\p> [73] Schillebeeckx M, Schrade A, Lobs AK, Pihlajoki M, Wil-son DB, Mitra RD. Laser capture microdissection-reduced representation bisulfite sequencing (LCM-RRBS) maps changes in DNA methylation associated with gonadectomy- induced adrenocortical neoplasia in the mouse. Nucleic Acids Res, 2013, 41(11): e116. <\p> [74] Taiwo O, Wilson GA, Morris T, Seisenberger S, Reik W, Pearce D, Beck S, Butcher LM. Methylome analysis using MeDIP-seq with low DNA concentrations. Nat Protoc, 2012, 7(4): 617–636. <\p> [75] Down TA, Rakyan VK, Turner DJ, Flicek P, Li H, Kulesha E, Gräf S, Johnson N, Herrero J, Tomazou EM, Thorne NP, Bäckdahl L, Herberth M, Howe KL, Jackson DK, Miretti MM, Marioni JC, Birney E, Hubbard TJP, Durbin R, Ta-varé S, Beck S. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol, 2008, 26(7): 779–785. <\p> [76] Aberg KA, McClay JL, Nerella S, Xie LY, Clark SL, Hudson AD, Bukszár J, Adkins D, Consortium SS, Hultman CM, Sullivan PF, Magnusson PK, van den Oord EJ. MBD-seq as a cost-effective approach for methylome- wide association studies: demonstration in 1500 case--control samples. Epigenomics, 2012, 4(6): 605–621. <\p> [77] Lan X, Adams C, Landers M, Dudas M, Krissinger D, Marnellos G, Bonneville R, Xu MX, Wang JB, Huang TH, Meredith G, Jin VX. High resolution detection and analy-sis of CpG dinucleotides methylation using MBD-Seq technology. PLoS ONE, 2011, 6(7): e22226. <\p> [78] Sonnet M, Baer C, Rehli M, Weichenhan D, Plass C. En-richment of methylated DNA by methyl-CpG immunoprecipitation. Methods Mol Biol, 2013, 971: 201–212. <\p> [79] Werner T. Next generation sequencing in functional ge-nomics. Brief Bioinform, 2010, 11(5): 499–511. <\p> [80] Hirst M, Marra MA. Next generation sequencing based approaches to epigenomics. Brief Funct Genomics, 2010, 9(5-6): 455–465. <\p> [81] Park PJ. ChIP-seq: advantages and challenges of a matur-ing technology. Nat Rev Genet, 2009, 10(10): 669–680. <\p> [82] Schones DE, Zhao KJ. Genome-wide approaches to studying chromatin modifications. Nat Rev Genet, 2008, 9(3): 179–191. <\p> [83] Schumacher A, Weinhäusl A, Petronis A. Application of microarrays for DNA methylation profiling. Methods Mol Biol, 2008, 439: 109–129. <\p> [84] Lister R, Ecker JR. Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Res, 2009, 19(6): 959–966. <\p> [85] Bailey T, Krajewski P, Ladunga I, Lefebvre C, Li QH, Liu T, Madrigal P, Taslim C, Zhang J. Practical guidelines for the comprehensive analysis of ChIP-seq data. PLoS Com-put Biol, 2013, 9(11): e1003326. <\p> [86] Yu M, Hon GC, Szulwach KE, Song CX, Jin P, Ren B, He C. Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nat Protoc, 2012, 7(12): 2159–2170. <\p> [87] Tanizawa H, Noma K. Unravelling global genome organi-zation by 3C-seq. Semin Cell Dev Biol, 2012, 23(2): 213– 221. <\p> [88] Duan ZJ, Andronescu M, Schutz K, Lee C, Shendure J, Fields S, Noble WS, Blau CA. A genome-wide 3C-method for characterizing the three-dimensional architectures of genomes. Methods, 2012, 58(3): 277–288. <\p> [89] Zhai K, Wu ZY, Yu DK. Chromosome Conformation Cap-ture (3C) and 3C-based methods. Progr Biochem Biophy, 2010, 37(9): 939–944. <\p> [90] Splinter E, de Wit E, van de Werken HJG, Klous P, de Laat W. Determining long-range chromatin interactions for se-lected genomic sites using 4C-seq technology: From fixa-tion to computation. Methods, 2012, 58(3): 221–230. <\p> [91] Gao F, Wei Z, Lu WG, Wang K. Comparative analysis of 4C-Seq data generated from enzyme-based and sonica-tion-based methods. Bmc Genomics, 2013, 14: 345. <\p> [92] Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA, Rubio ED, Krumm A, Lamb J, Nusbaum C, Green RD, Dekker J. Chromosome Conformation Capture Carbon Copy (5C): A massively parallel solution for map-ping interactions between genomic elements. Genome Res, 2006, 16(10): 1299–1309. <\p> [93] Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, Sheffield NC, Stergachis AB, Wang H, Vernot B, Garg K, John S, Sandstrom R, Bates D, Boat-man L, Canfield TK, Diegel M, Dunn D, Ebersol AK, Frum T, Giste E, Johnson AK, Johnson EM, Kutyavin T, Lajoie B, Lee BK, Lee K, London D, Lotakis D, Neph S, Neri F, Nguyen ED, Qu HZ, Reynolds AP, Roach V, Safi A, Sanchez ME, Sanyal A, Shafer A, Simon JM, Song LY, Vong S, Weaver M, Yan YQ, Zhang ZC, Zhang ZZ, Len-hard B, Tewari M, Dorschner MO, Hansen RS, Navas PA, Stamatoyannopoulos G, Iyer VR, Lieb JD, Sunyaev SR, Akey JM, Sabo PJ, Kaul R, Furey TS, Dekker J, Crawford GE, Stamatoyannopoulos JA. The accessible chromatin landscape of the human genome. Nature, 2012, 489(7414): 75–82. <\p> [94] Belton JM, McCord RP, Gibcus JH, Naumova N, Zhan Y, Dekker J. Hi-C: A comprehensive technique to capture the conformation of genomes. Methods, 2012, 58(3): 268– 276. <\p> [95] Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, Laue ED, Tanay A, Fraser P. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature, 2013, 502(7469): 59–64. <\p> [96] Zhang JY, Poh HM, Peh SQ, Sia YY, Li GL, Mulawadi FH, Goh Y, Fullwood MJ, Sung WK, Ruan XA, Ruan YJ. ChIA-PET analysis of transcriptional chromatin interac-tions. Methods, 2012, 58(3): 289–299. <\p> [97] Goh Y, Fullwood MJ, Poh HM, Peh SQ, Ong CT, Zhang J, Ruan X, Ruan Y. Chromatin Interaction Analysis with Paired-End Tag Sequencing (ChIA-PET) for mapping chromatin interactions and understanding transcription regulation. J Vis Exp, 2012, (62). pii: 3770. <\p> [98] Li GL, Fullwood MJ, Xu H, Mulawadi FH, Velkov S, Vega V, Ariyaratne PN, Mohamed YB, Ooi HS, Tennakoon C, Wei CL, Ruan YJ, Sung WK. ChIA-PET tool for compre-hensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol, 2010, 11(2): R22. <\p> [99] Zeng WH, Mortazavi A. Technical considerations for functional sequencing assays. Nat Immunol, 2012, 13(9): 802–807. <\p> [100] Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res, 2007, 17(6): 877–885. <\p> [101] Song LY, Zhang ZC, Grasfeder LL, Boyle AP, Giresi PG, Lee BK, Sheffield NC, Graf S, Huss M, Keefe D, Liu Z, London D, McDaniell RM, Shibata Y, Showers KA, Simon JM, Vales T, Wang TY, Winter D, Zhang ZZ, Clarke ND, Birney E, Iyer VR, Crawford GE, Lieb JD, Furey TS. Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res, 2011, 21(10): 1757–1767. <\p> [102] Simon JM, Giresi PG, Davis IJ, Lieb JD. Using formalde-hyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA. Nat Protoc, 2012, 7(2): 256–267. <\p> [103] Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolution-ary tool for transcriptomics. Nat Rev Genet, 2009, 10(1): 57–63. <\p> [104] Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski I, Marden JH. Rapid transcriptome characterization for a nonmodel organism using 454 py-rosequencing. Mol Ecol, 2008, 17(7): 1636–1647. <\p> [105] Lister R, O'Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR. Highly integrated sin-gle-base resolution maps of the epigenome in Arabidopsis. Cell, 2008, 133(3): 523–536. <\p> [106] Cloonan N, Forrest ARR, Kolle G, Gardiner BBA, Faulk-ner GJ, Brown MK, Taylor DF, Steptoe AL, Wani S, Be-thel G, Robertson AJ, Perkins AC, Bruce SJ, Lee CC, Ranade SS, Peckham HE, Manning JM, McKernan KJ, Grimmond SM. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods, 2008, 5(7): 613–619. <\p> [107] Wang J, Wang W, Li RQ, Li YR, Tian G, Goodman L, Fan W, Zhang JQ, Li J, Zhang JB, Guo YR, Feng BX, Li H, Lu Y, Fang XD, Liang HQ, Du ZL, Li D, Zhao YQ, Hu YJ, Yang ZZ, Zheng HC, Hellmann I, Inouye M, Pool J, Yi X, Zhao J, Duan JJ, Zhou Y, Qin JJ, Ma LJ, Li GQ, Yang ZT, Zhang GJ, Yang B, Yu C, Liang F, Li WJ, Li SC, Li DW, Ni PX, Ruan J, Li QB, Zhu HM, Liu DY, Lu ZK, Li N, Guo GW, Zhang JG, Ye J, Fang L, Hao Q, Chen Q, Liang Y, Su YY, San A, Ping C, Yang S, Chen F, Li L, Zhou K, Zheng HK, Ren YY, Yang L, Gao Y, Yang GH, Li Z, Feng XL, Kristiansen K, Wong GKS, Nielsen R, Durbin R, Bolund L, Zhang XQ, Li SG, Yang HM, Wang J. The dip-loid genome sequence of an Asian individual. Nature, 2008, 456(7218): 60–65. <\p> [108] Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C, Fouse SD, Johnson BE, Hong CB, Nielsen C, Zhao YJ, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, Heine VM, Rowitch DH, Xing XY, Fiore C, Schillebeeckx M, Jones SJM, Haussler D, Marra MA, Hirst M, Wang T, Costello JF. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature, 2010, 466(7303): 253–257. <\p> [109] Dahl C, Gronbaek K, Guldberg P. Advances in DNA me-thylation: 5-hydroxymethylcytosine revisited. Clin Chim Acta, 2011, 412(11–12): 831–836. <\p> [110] Tan L, Xiong LJ, Xu WQ, Wu FZ, Huang N, Xu YF, Kong LC, Zheng LJ, Schwartz L, Shi Y, Shi YG. Genome-wide comparison of DNA hydroxymethylation in mouse em-bryonic stem cells and neural progenitor cells by a new comparative hMeDIP-seq method. Nucleic Acids Res, 2013, 41(7): e84. <\p> [111] Pastor WA, Huang Y, Henderson HR, Agarwal S, Rao A. The GLIB technique for genome-wide mapping of 5-hydroxymethylcytosine. Nat Protoc, 2012, 7(10): 1909– 1917. <\p> [112] Pastor WA, Pape UJ, Huang Y, Henderson HR, Lister R, Ko M, McLoughlin EM, Brudno Y, Mahapatra S, Kapranov P, Tahiliani M, Daley GQ, Liu XS, Ecker JR, Milos PM, Agarwal S, Rao A. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature, 2011, 473(7347): 394–397. <\p> [113] Mellen M, Ayata P, Dewell S, Kriaucionis S, Heintz N. MeCP2 binds to 5-hmC enriched within active genes and accessible chromatin in the nervous system. Cell, 2012, 151(7): 1417–1430. <\p> [114] Xu YF, Wu FZ, Tan L, Kong LC, Xiong LJ, Deng J, Bar-bera AJ, Zheng LJ, Zhang HK, Huang S, Min JR, Nichol-son T, Chen TP, Xu GL, Shi Y, Zhang K, Shi YG. Ge-nome-wide regulation of 5-hmC, 5-mC, and gene expres-sion by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell, 2011, 42(4): 451–464. <\p> [115] Yu M, Hon GC, Szulwach KE, Song CX, Zhang L, Kim A, Li XK, Dai Q, Shen Y, Park B, Min JH, Jin P, Ren B, He C. Base-Resolution Analysis of 5-Hydroxymethylcytosine in the Mammalian Genome. Cell, 2012, 149(6): 1368–1380. <\p> [116] Laurent L, Wong E, Li GL, Huynh T, Tsirigos A, Ong CT, Low HM, Sung KWK, Rigoutsos I, Loring J, Wei CL. Dynamic changes in the human methylome during differ-entiation. Genome Res, 2010, 20(3): 320–331. <\p> [117] Dyachenko OV, Schevchuk TV, Kretzner L, Buryanov YI, Smith SS. Human non-CG methylation: are human stem cells plant-like? Epigenetics, 2010, 5(7): 569–572. <\p> [118] Jia GF, Fu Y, Zhao X, Dai Q, Zheng GQ, Yang Y, Yi CQ, Lindahl T, Pan T, Yang YG, He C. N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol, 2011, 7(12): 885–887. <\p> [119] Saletore Y, Chen-Kiang S, Mason CE. Novel RNA regu-latory mechanisms revealed in the epitranscriptome. RNA Biol, 2013, 10(3): 342–346. <\p> [120] Zheng G, Dahl JA, Niu Y, Fu Y, Klungland A, Yang YG, He C. Sprouts of RNA epigenetics: The discovery of mammalian RNA demethylases. RNA Biol, 2013, 10(6): 915–918. <\p> [121] Zheng GQ, Dahl JA, Niu YM, Fedorcsak P, Huang CM, Li CJ, Vagbo CB, Shi Y, Wang WL, Song SH, Lu ZK, Bos-mans RPG, Dai Q, Hao YJ, Yang X, Zhao WM, Tong WM, Wang XJ, Bogdan F, Furu K, Fu Y, Jia GF, Zhao X, Liu J, Krokan HE, Klungland A, Yang YG, He C. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabo-lism and mouse fertility. Mol Cell, 2013, 49(1): 18–29. <\p> [122] Gilmour DS, Lis JT. Detecting protein-DNA interactions in vivo: distribution of RNA polymerase on specific bac-terial genes. Proc Natl Acad Sci USA, 1984, 81(14): 4275– 4279. <\p> [123] Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E, Volkert TL, Wilson CJ, Bell SP, Young RA. Genome-wide location and function of DNA binding proteins. Science, 2000, 290(5500): 2306–2309. <\p> [124] Roh TY, Ngau WC, Cui KR, Landsman D, Zhao KJ. High-resolution genome-wide mapping of histone modifi-cations. Nat Biotechnol, 2004, 22(8): 1013–1016. <\p> [125] Fields S. Site-seeing by sequencing. Science, 2007, 316(5830): 1441–1442. <\p> [126] Zhou VW, Goren A, Bernstein BE. Charting histone modi-fications and the functional organization of mammalian genomes. Nat Rev Genet, 2011, 12(1): 7–18. <\p> [127] Izzo A, Schneider R. Chatting histone modifications in mammals. Brief Funct Genomics, 2010, 9(5-6): 429–443. <\p> [128] Wang ZB, Schones DE, Zhao KJ. Characterization of hu-man epigenomes. Curr Opin Genet Dev, 2009, 19(2): 127–134. <\p> [129] Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res, 2011, 21(3): 381–395. <\p> [130] Xu X, Hoang S, Mayo MW, Bekiranov S. Application of machine learning methods to histone methylation ChIP-Seq data reveals H4R3me2 globally represses gene expression. BMC Bioinformatics, 2010, 11: 396. <\p> [131] Albert I, Mavrich TN, Tomsho LP, Qi J, Zanton SJ, Schuster SC, Pugh BF. Translational and rotational set-tings of H2A. Z nucleosomes across the Saccharomyces cerevisiae genome. Nature, 2007, 446(7135): 572–576. <\p> [132] Johnson SM, Tan FJ, McCullough HL, Riordan DP, Fire AZ. Flexibility and constraint in the nucleosome core landscape of Caenorhabditis elegans chromatin. Genome Res, 2006, 16(12): 1505–1516. <\p> [133] Schmid CD, Bucher P. ChIP-Seq data reveal nucleosome architecture of human promoters. Cell, 2007, 131(5): 831– 832. <\p> [134] Boeger H, Griesenbeck J, Strattan JS, Kornberg RD. Nu-cleosomes unfold completely at a transcriptionally active promoter. Mol Cell, 2003, 11(6): 1587–1598. <\p> [135] Song SH, Hou CH, Dean A. A positive role for NLI/Ldb1 in long-range beta-globin locus control region function. Mol Cell, 2007, 28(5): 810–822. <\p> [136] Harismendy O, Notani D, Song XY, Rahim NG, Tanasa B, Heintzman N, Ren B, Fu XD, Topol EJ, Rosenfeld MG, Frazer KA. 9p21 DNA variants associated with coronary artery disease impair interferon-γ signalling response. Nature, 2011, 470(7333): 264–268. <\p> [137] Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao YJ, Zeng T, Euskirchen G, Bernier B, Varhol R, Delaney A, Thiessen N, Griffith OL, He A, Marra M, Snyder M, Jones S. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods, 2007, 4(8): 651–657. <\p> [138] Johnson DS, Mortazavi A, Myers RM, Wold B. Ge-nome-wide mapping of in vivo protein-DNA interactions. Science, 2007, 316(5830): 1497–1502. <\p> [139] Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein BE. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature, 2011, 473(7345): 43–49. <\p> [140] Stadhouders R, Thongjuea S, Andrieu-Soler C, Palstra RJ, Bryne JC, van den Heuvel A, Stevens M, de Boer E, Kockx C, van der Sloot A, van den Hout M, van Ijcken W, Eick D, Lenhard B, Grosveld F, Soler E. Dynamic long- range chromatin interactions control Myb proto-oncogene transcription during erythroid development. EMBO J, 2012, 31(4): 986–999. <\p> [141] Thongjuea S, Stadhouders R, Grosveld FG, Soler E, Len-hard B. r3Cseq: an R/Bioconductor package for the dis-covery of long-range genomic interactions from chromo-some conformation capture and next-generation sequenc-ing data. Nucleic Acids Res, 2013, 41(13): e132. <\p> [142] Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet, 2006, 38(11): 1348–1354. <\p> [143] Splinter E, de Laat W. The complex transcription regula-tory landscape of our genome: control in three dimensions. EMBO J, 2011, 30(21): 4345–4355. <\p> [144] van de Werken HJG, Landan G, Holwerda SJB, Hoichman M, Klous P, Chachik R, Splinter E, Valdes-Quezada C, Öz Y, Bouwman BAM, Verstegen MJAM, de Wit E, Tanay A, de Laat W. Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nat Methods, 2012, 9(10): 969– 972. <\p> [145] Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J. Comprehensive map-ping of long-range interactions reveals folding principles of the human genome. Science, 2009, 326(5950): 289– 293. <\p> [146] Khrameeva EE, Mironov AA, Fedonin GG, Khaitovich P, Gelfand MS. Spatial proximity and similarity of the epi-genetic state of genome domains. PLoS ONE, 2012, 7(4): e33947. <\p> [147] Maruyama R, Choudhury S, Kowalczyk A, Bessarabova M, Beresford-Smith B, Conway T, Kaspi A, Wu ZH, Nikol-skaya T, Merino VF, Lo PK, Liu XS, Nikolsky Y, Sukumar S, Haviv I, Polyak K. Epigenetic regulation of cell type-specific expression patterns in the human mammary epithelium. PLoS Genet, 2011, 7(4): e1001369. <\p> [148] Lu H, Cui JY, Gunewardena S, Yoo B, Zhong XB, Klaas-sen CD. Hepatic ontogeny and tissue distribution of mRNAs of epigenetic modifiers in mice using RNA- sequencing. Epigenetics, 2012, 7(8): 914–929. <\p> [149] Kaminsky ZA, Tang T, Wang SC, Ptak C, Oh GH, Wong AH, Feldcamp LA, Virtanen C, Halfvarson J, Tysk C, McRae AF, Visscher PM, Montgomery GW, Gottesman II, Martin NG, Petronis A. DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet, 2009, 41(2): 240–245. <\p> [150] Petronis A. Epigenetics and twins: three variations on the theme. Trends Genet, 2006, 22(7): 347–350. <\p> [151] Bell JT, Spector TD. A twin approach to unraveling epi-genetics. Trends Genet, 2011, 27(3): 116–125. <\p> [152] Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ball-estar ML, Heine-Suner D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA, 2005, 102(30): 10604–10609. <\p> [153] Kong A, Steinthorsdottir V, Masson G, Thorleifsson G, Sulem P, Besenbacher S, Jonasdottir A, Sigurdsson A, Kristinsson KT, Jonasdottir A, Frigge ML, Gylfason A, Olason PI, Gudjonsson SA, Sverrisson S, Stacey SN, Sigurgeirsson B, Benediktsdottir KR, Sigurdsson H, Jonsson T, Benediktsson R, Olafsson JH, Johannsson OT, Hreidarsson AB, Sigurdsson G, Ferguson-Smith AC, Gudbjartsson DF, Thorsteinsdottir U, Stefansson K, Con-sortium D. Parental origin of sequence variants associated with complex diseases. Nature, 2009, 462(7275): 868– 874. <\p> [154] Bell JT, Pai AA, Pickrell JK, Gaffney DJ, Pique-Regi R, Degner JF, Gilad Y, Pritchard JK. DNA methylation pat-terns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol, 2011, 12(1): R10. <\p> [155] Kerkel K, Spadola A, Yuan E, Kosek J, Jiang L, Hod E, Li K, Murty VV, Schupf N, Vilain E, Morris M, Haghighi F, Tycko B. Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nat Genet, 2008, 40(7): 904–908. <\p> [156] Tycko B. Mapping allele-specific DNA methylation: a new tool for maximizing information from GWAS. Am J Hum Genet, 2010, 86(2): 109–112. <\p> [157] Chadwick LH. The NIH Roadmap Epigenomics Program data resource. Epigenomics, 2012, 4(3): 317–324. <\p> [158] Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, Kellis M, Marra MA, Beau-det AL, Ecker JR, Farnham PJ, Hirst M, Lander ES, Mik-kelsen TS, Thomson JA. The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol, 2010, 28(10): 1045–1048.<\p> |
[1] | 张競文,续倩,李国亮. 癌症发生发展中的表观遗传学研究[J]. 遗传, 2019, 41(7): 567-581. |
[2] | 马志鹏, 陈军. 无义突变与“遗传补偿效应”[J]. 遗传, 2019, 41(5): 359-364. |
[3] | 黄鑫,陈永强,徐国良,彭淑红. 脂肪组织DNA甲基化与糖尿病和肥胖的发生发展[J]. 遗传, 2019, 41(2): 98-110. |
[4] | 潘云枫, 王演怡, 陈静雯, 范怡梅. 线粒体代谢介导的表观遗传改变与衰老研究[J]. 遗传, 2019, 41(10): 893-904. |
[5] | 鞠君毅,赵权. γ-珠蛋白基因表达调控机制与临床应用[J]. 遗传, 2018, 40(6): 429-444. |
[6] | 岳敏, 杨禹, 郭改丽, 秦曦明. 哺乳动物生物钟的遗传和表观遗传研究进展[J]. 遗传, 2017, 39(12): 1122-1137. |
[7] | 刘辰东, 杨露, 蒲红州, 杨琼, 黄文耀, 赵雪, 朱砺, 张顺华. 运动对骨骼肌基因表达的表观遗传调控作用[J]. 遗传, 2017, 39(10): 888-896. |
[8] | 张轲, 冯光德, 张宝云, 向伟, 陈龙, 杨芳, 储明星, 王凭青. 表观遗传标记在猪分子育种中的研究与应用前景[J]. 遗传, 2016, 38(7): 634-643. |
[9] | 李元丰, 韩玉波, 曹鹏博, 孟金凤, 李海北, 秦庚, 张锋, 靳光付, 杨勇, 邬玲仟, 平杰, 周钢桥. 2015年中国医学遗传学研究领域若干重要进展[J]. 遗传, 2016, 38(5): 363-390. |
[10] | 张笑, 贾桂芳. RNA表观遗传修饰:N6-甲基腺嘌呤[J]. 遗传, 2016, 38(4): 275-288. |
[11] | 方科, 张凯翔, 王建, 付志猛, 赵湘辉. 表观遗传学新标记--5-羟甲基胞嘧啶检测方法的研究进展[J]. 遗传, 2016, 38(3): 206-216. |
[12] | 朱屹然,张美玲,翟志超,赵云蛟,马馨. 生殖细胞及早期胚胎基因组印记的表观调控[J]. 遗传, 2016, 38(2): 103-108. |
[13] | 刘姝丽,张胜利,俞英. 同卵双胞胎在复杂性状DNA甲基化调控机制研究中的应用[J]. 遗传, 2016, 38(12): 1043-1055. |
[14] | 刘洋洋, 崔恒宓. DNA甲基化分析中重亚硫酸盐处理DNA转化效率的评估方法[J]. 遗传, 2015, 37(9): 939-944. |
[15] | 谢龙祥, 于召箫, 郭思瑶, 李萍, AbualgasimElgailiAbdalla, 谢建平. 表观遗传和蛋白质翻译后修饰在细菌耐药中的作用[J]. 遗传, 2015, 37(8): 793-800. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: