遗传 ›› 2024, Vol. 46 ›› Issue (10): 795-806.doi: 10.16288/j.yczz.24-162
收稿日期:
2024-06-05
修回日期:
2024-08-30
出版日期:
2024-09-13
发布日期:
2024-09-13
通讯作者:
范小英,博士,研究员,研究方向:单细胞多组学。E-mail: fan_xiaoying@gzlab.ac.cn作者简介:
徐晓鹏,博士,助理研究员,研究方向:医学遗传学。E-mail: xu_xiaopeng@gzlab.ac.cn
基金资助:
Xiaopeng Xu1(), Xiaoying Fan1,2(
)
Received:
2024-06-05
Revised:
2024-08-30
Published:
2024-09-13
Online:
2024-09-13
Supported by:
摘要:
表达数量性状位点(expression quantitative trait loci,eQTL)表示控制基因表达量的遗传变异位点。eQTL分析是后全基因组关联研究时代鉴定疾病相关遗传位点功能的重要方法,且取得了诸多重要发现。传统的eQTL分析基于全基因组测序结合整体RNA测序技术,细胞间差异的基因表达水平会被掩盖,从而无法鉴定细胞类型或状态依赖的eQTL,因此也难以解析特定环境下疾病相关遗传变异位点。近年来,随着单细胞转录组测序技术的发展和应用普及,基于单细胞转录组测序的eQTL (single-cell RNA sequencing-based eQTL,sc-eQTL)研究技术逐渐成为热点,其优势在于可以充分利用单细胞测序的分辨率和颗粒度挖掘细胞类型、细胞状态以及细胞动态依赖的表达变异位点,显著提升解析基因表达关联的遗传变异位点的能力,对人们探究复杂器官的形成以及疾病的发生、发展、干预和治疗具有重要意义。本文主要从sc-eQTL研究的发展、设计方案、建模策略以及面临的挑战等诸多方面综述近年来的研究进展,以期为科研工作者挖掘致病位点,解析基因调控提供全新的视角。
徐晓鹏, 范小英. 单细胞精度的表达数量性状位点研究进展[J]. 遗传, 2024, 46(10): 795-806.
Xiaopeng Xu, Xiaoying Fan. Research progress on single-cell expression quantitative trait loci[J]. Hereditas(Beijing), 2024, 46(10): 795-806.
表1
2018年至今sc-eQTL研究发展概况"
年份 | 细胞或组织类型 | 群体大小 | 细胞数目 | 科学发现 | 参考文献 |
---|---|---|---|---|---|
2018 | PBMC | 45 | 25,000 | 第1篇sc-eQTL研究论文,表明基于单细胞数据的eQTL定位可以发现先前许多被批量转录组数据掩盖的eQTL位点 | [ |
2019 | iPSC | 53 | 5447 | 定义了variance eQTL | [ |
2020 | iPSC-内胚层 | 125 | 36,044 | 鉴定控制内胚层动态分化过程中基因变化的遗传位点 | [ |
2021 | iPSC-神经元 | 215 | 1,027,401 | 鉴定控制不同阶段神经元分化以及鱼藤酮诱导的氧化应激反应的遗传变异位点 | [ |
2021 | 成纤维细胞 | 79 | 64,018 | 第1篇分析成纤维细胞的sc-eQTL文章,展示了个体间的遗传差异如何影响细胞类型特异的eQTL位点变化 | [ |
2021 | PBMC | 90 | 235,161 | 鉴定控制不同种群外周血单核细胞感染流感之后的差异eQTL位点 | [ |
2022 | 大脑组织 | 192 | - | 第1篇以组织进行单细胞测序,进而鉴定组织内部细胞特异性的eQTL位点 | [ |
2022 | iPSC-心肌细胞 | 19 | 230,822 | 鉴定了dynamic eQTL位点 | [ |
2022 | 记忆T细胞 | 259 | 500,089 | 利用基于单细胞分辨率的PME模型鉴定了记忆T细胞状态依赖的eQTL位点 | [ |
2022 | PBMC | 120 | 1,300,000 | 鉴定调控不同个体对病原体响应的差异eQTL位点,并鉴定1个IFN调控基因 | [ |
2022 | PBMC | 261 | 1,200,000 | 利用多种族群体样本,鉴定了与系统性红斑狼疮相关的遗传变异位点 | [ |
2022 | PBMC | 89 | 735,000 | 通过激活CD4+ T细胞,分析了19种不同T细胞亚群的eQTL位点 | [ |
2022 | CD4+ T细胞 | 119 | 655,349 | 鉴定了38个CD4+ T细胞亚群在3个激活时间节点的特定eQTL位点 | [ |
2022 | PBMC | 982 | 1,270,000 | 第1篇群体规模接近1000的sc-eQTL文章,系统分析了14种免疫细胞的eQTL位点 | [ |
2023 | PBMC | 222 | 1,047,824 | 系统分析了不同种群受SARS-CoV-2和IAV刺激之后的eQTL差异变化 | [ |
2023 | PBMC | 1,037 | 1,131,414 | 基于单细胞分辨率eQTL模型,鉴定了细胞动态依赖的控制HLA表达的位点 | [ |
2023 | 成纤维细胞 | 68 | 22,188 | 开发了GASPACHO定位模型鉴定细胞轨迹变化的eQTL位点 | [ |
2024 | 大脑组织 | 388 | 2,800,000 | 第1篇结合多个种族,并结合scATAC-seq大规模的大脑细胞亚型eQTL分析,构建了精准的疾病预测模型 | [ |
2024 | 大脑组织 | 424 | 1,500,000 | 系统鉴定了大脑64种细胞亚型的eQTL位点,并鉴定到多个与阿尔兹海默相关的新的遗传变异位点 | [ |
2024 | 肺部组织 | 114 | 475,047 | 系统鉴定了肺组织中38种细胞亚型的eQTL位点,且鉴定与肺纤维化相关的细胞类型特异变异位点 | [ |
图3
sc-eQTL的两种建模策略(伪批量模型和单细胞模型) A:伪批量建模策略。此建模方式首先将单细胞依据其表达基因的差异将其分为不同的细胞类型,然后依据每种细胞类型计算每个样本此类型细胞的每个基因表达谱,最后可以采用先前为bulk RNA-seq建立的现有模型进行分析;B:单细胞建模策略。这里展示的是一种叫做CellRegMap的单细胞模型建模策略[45]。此模型中对每个细胞引入了背景(contexts)的变量,此变量可以代表细胞周期(cell cycle)、细胞刺激响应(cell response)以及细胞发育轨迹(cell trajectory)等。在模型计算过程中,可以将G×C引入模型,对例如细胞动态变化过程中eQTL计算具有较好的应用场景。"
[1] | Cramer P. Organization and regulation of gene transcription. Nature, 2019, 573(7772): 45-54. |
[2] | Dhar GA, Saha S, Mitra P, Nag Chaudhuri R. DNA methylation and regulation of gene expression: guardian of our health. Nucleus (Calcutta), 2021, 64(3): 259-270. |
[3] |
Dong XJ, Weng ZP. The correlation between histone modifications and gene expression. Epigenomics, 2013, 5(2): 113-116.
doi: 10.2217/epi.13.13 pmid: 23566087 |
[4] | Penagos-Puig A, Furlan-Magaril M. Heterochromatin as an important driver of genome organization. Front Cell Dev Biol, 2020, 8: 579137. |
[5] |
Kim S, Wysocka J. Deciphering the multi-scale, quantitative cis-regulatory code. Mol Cell, 2023, 83(3): 373-392.
doi: 10.1016/j.molcel.2022.12.032 pmid: 36693380 |
[6] | Zheng H, Xie W. The role of 3D genome organization in development and cell differentiation. Nat Rev Mol Cell Biol, 2019, 20(9): 535-550. |
[7] |
Assou S, Boumela I, Haouzi D, Anahory T, Dechaud H, De Vos J, Hamamah S. Dynamic changes in gene expression during human early embryo development: from fundamental aspects to clinical applications. Hum Reprod Update, 2011, 17(2): 272-290.
doi: 10.1093/humupd/dmq036 pmid: 20716614 |
[8] |
Yamamoto R, Chung R, Vazquez JM, Sheng HJ, Steinberg PL, Ioannidis NM, Sudmant PH. Tissue-specific impacts of aging and genetics on gene expression patterns in humans. Nat Commun, 2022, 13(1): 5803.
doi: 10.1038/s41467-022-33509-0 pmid: 36192477 |
[9] | Krijger PHL, de Laat W. Regulation of disease-associated gene expression in the 3D genome. Nat Rev Mol Cell Biol, 2016, 17(12): 771-782. |
[10] | Nica AC, Dermitzakis ET. Expression quantitative trait loci: present and future. Philos Trans R Soc Lond B Biol Sci, 2013, 368(1620): 20120362. |
[11] | van der Wijst M, de Vries DH, Groot HE, Trynka G, Hon CC, Bonder MJ, Stegle O, Nawijn MC, Idaghdour Y, van der Harst P, Ye CJ, Powell J, Theis FJ, Mahfouz A, Heinig M, Franke L. The single-cell eQTLGen consortium. eLife, 2020, 9: e52155. |
[12] |
Xu XG, Eales JM, Akbarov A, Guo H, Becker L, Talavera D, Ashraf F, Nawaz J, Pramanik S, Bowes J, Jiang X, Dormer J, Denniff M, Antczak A, Szulinska M, Wise I, Prestes PR, Glyda M, Bogdanski P, Zukowska- Szczechowska E, Berzuini C, Woolf AS, Samani NJ, Charchar FJ, Tomaszewski M. Molecular insights into genome-wide association studies of chronic kidney disease-defining traits. Nat Commun, 2018, 9(1): 4800.
doi: 10.1038/s41467-018-07260-4 pmid: 30467309 |
[13] |
Albert FW, Kruglyak L. The role of regulatory variation in complex traits and disease. Nat Rev Genet, 2015, 16(4): 197-212.
doi: 10.1038/nrg3891 pmid: 25707927 |
[14] |
Cuomo ASE, Nathan A, Raychaudhuri S, MacArthur DG, Powell JE. Single-cell genomics meets human genetics. Nat Rev Genet, 2023, 24(8): 535-549.
doi: 10.1038/s41576-023-00599-5 pmid: 37085594 |
[15] |
Wills QF, Livak KJ, Tipping AJ, Enver T, Goldson AJ, Sexton DW, Holmes C. Single-cell gene expression analysis reveals genetic associations masked in whole- tissue experiments. Nat Biotechnol, 2013, 31(8): 748-752.
doi: 10.1038/nbt.2642 pmid: 23873083 |
[16] | van der Wijst MGP, Brugge H, de Vries DH, Deelen P, Swertz MA, LifeLines Cohort Study, BIOS Consortium, Franke L. Single-cell RNA sequencing identifies celltype- specific cis-eQTLs and co-expression QTLs. Nat Genet, 2018, 50(4): 493-497. |
[17] | Ding RF, Wang QX, Gong LH, Zhang T, Zou XD, Xiong KW, Liao Q, Plass M, Li L. scQTLbase: an integrated human single-cell eQTL database. Nucleic Acids Res, 2024, 52(D1): D1010-D1017. |
[18] | Sarkar AK, Tung PY, Blischak JD, Burnett JE, Li YI, Stephens M, Gilad Y. Discovery and characterization of variance QTLs in human induced pluripotent stem cells. PLoS Genet, 2019, 15(4): e1008045. |
[19] |
Cuomo ASE, Seaton DD, McCarthy DJ, Martinez I, Bonder MJ, Garcia-Bernardo J, Amatya S, Madrigal P, Isaacson A, Buettner F, Knights A, Natarajan KN, HipSci Consortium, Vallier L, Marioni JC, Chhatriwala M, Stegle O. Single-cell RNA-sequencing of differentiating iPS cells reveals dynamic genetic effects on gene expression. Nat Commun, 2020, 11(1): 810.
doi: 10.1038/s41467-020-14457-z pmid: 32041960 |
[20] |
Jerber J, Seaton DD, Cuomo ASE, Kumasaka N, Haldane J, Steer J, Patel M, Pearce D, Andersson M, Bonder MJ, Mountjoy E, Ghoussaini M, Lancaster MA, HipSci Consortium, Marioni JC, Merkle FT, Gaffney DJ, Stegle O. Population-scale single-cell RNA-seq profiling across dopaminergic neuron differentiation. Nature Genetics, 2021, 53(3): 304-312.
doi: 10.1038/s41588-021-00801-6 pmid: 33664506 |
[21] |
Neavin D, Nguyen Q, Daniszewski MS, Liang HH, Chiu HS, Wee YK, Senabouth A, Lukowski SW, Crombie DE, Lidgerwood GE, Hernández D, Vickers JC, Cook AL, Palpant NJ, Pébay A, Hewitt AW, Powell JE. Single cell eQTL analysis identifies cell type-specific genetic control of gene expression in fibroblasts and reprogrammed induced pluripotent stem cells. Genome Biol, 2021, 22(1): 76.
doi: 10.1186/s13059-021-02293-3 pmid: 33673841 |
[22] |
Randolph HE, Fiege JK, Thielen BK, Mickelson CK, Shiratori M, Barroso-Batista J, Langlois RA, Barreiro LB. Genetic ancestry effects on the response to viral infection are pervasive but cell type specific. Science, 2021, 374(6571): 1127-1133.
doi: 10.1126/science.abg0928 pmid: 34822289 |
[23] |
Bryois J, Calini D, Macnair W, Foo L, Urich E, Ortmann W, Iglesias VA, Selvaraj S, Nutma E, Marzin M, Amor S, Williams A, Castelo-Branco G, Menon V, De Jager P, Malhotra D. Cell-type-specific cis-eQTLs in eight human brain cell types identify novel risk genes for psychiatric and neurological disorders. Nat Neurosci, 2022, 25(8): 1104-1112.
doi: 10.1038/s41593-022-01128-z pmid: 35915177 |
[24] | Elorbany R, Popp JM, Rhodes K, Strober BJ, Barr K, Qi GH, Gilad Y, Battle A. Single-cell sequencing reveals lineage-specific dynamic genetic regulation of gene expression during human cardiomyocyte differentiation. PLoS Genet, 2022, 18(1): e1009666. |
[25] | Nathan A, Asgari S, Ishigaki K, Valencia C, Amariuta T, Luo Y, Beynor JI, Baglaenko Y, Suliman S, Price AL, Lecca L, Murray MB, Moody DB, Raychaudhuri S. Single-cell eQTL models reveal dynamic T cell state dependence of disease loci. Nature, 2022, 606(7912): 120-128. |
[26] |
Oelen R, de Vries DH, Brugge H, Gordon MG, Vochteloo M, single-cell eQTLGen consortium, BIOS Consortium, Ye CJ, Westra HJ, Franke L, van der Wijst MGP. Single-cell RNA-sequencing of peripheral blood mononuclear cells reveals widespread, context-specific gene expression regulation upon pathogenic exposure. Nat Commun, 2022, 13(1): 3267.
doi: 10.1038/s41467-022-30893-5 pmid: 35672358 |
[27] | Perez RK, Gordon MG, Subramaniam M, Kim MC, Hartoularos GC, Targ S, Sun Y, Ogorodnikov A, Bueno R, Lu A, Thompson M, Rappoport N, Dahl A, Lanata CM, Matloubian M, Maliskova L, Kwek SS, Li T, Slyper M, Waldman J, Dionne D, Rozenblatt-Rosen O, Fong L, Dall'Era M, Balliu B, Regev A, Yazdany J, Criswell LA, Zaitlen N, Ye CJ. Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus. Science, 2022, 376(6589): eabf1970. |
[28] | Schmiedel BJ, Gonzalez-Colin C, Fajardo V, Rocha J, Madrigal A, Ramírez-Suástegui C, Bhattacharyya S, Simon H, Greenbaum JA, Peters B, Seumois G, Ay F, Chandra V, Vijayanand P. Single-cell eQTL analysis of activated T cell subsets reveals activation and cell type-dependent effects of disease-risk variants. Sci Immunol, 2022, 7(68): eabm2508. |
[29] | Soskic B, Cano-Gamez E, Smyth DJ, Ambridge K, Ke ZY, Matte JC, Bossini-Castillo L, Kaplanis J, Ramirez-Navarro L, Lorenc A, Nakic N, Esparza-Gordillo J, Rowan W, Wille D, Tough DF, Bronson PG, Trynka G. Immune disease risk variants regulate gene expression dynamics during CD4(+) T cell activation. Nat Genet, 2022, 54(6): 817-826. |
[30] | Yazar S, Alquicira-Hernandez J, Wing K, Senabouth A, Gordon MG, Andersen S, Lu QY, Rowson A, Taylor TRP, Clarke L, Maccora K, Chen C, Cook AL, Ye CJ, Fairfax KA, Hewitt AW, Powell J E. Single-cell eQTL mapping identifies cell type-specific genetic control of autoimmune disease. Science, 2022, 376(6589): eabf3041. |
[31] | Aquino Y, Bisiaux A, Li Z, O'Neill M, Mendoza-Revilla J, Merkling SH, Kerner G, Hasan M, Libri V, Bondet V, Smith N, de Cevins C, Ménager M, Luca F, Pique-Regi R, Barba-Spaeth G, Pietropaoli S, Schwartz O, Leroux-Roels G, Lee CK, Leung K, Wu JT, Peiris M, Bruzzone R, Abel L, Casanova JL, Valkenburg SA, Duffy D, Patin E, Rotival M, Quintana-Murci L. Dissecting human population variation in single-cell responses to SARS-CoV-2. Nature, 2023, 621(7977): 120-128. |
[32] |
Kang JB, Shen AZ, Gurajala S, Nathan A, Rumker L, Aguiar VRC, Valencia C, Lagattuta KA, Zhang F, Jonsson AH, Yazar S, Alquicira-Hernandez J, Khalili H, Ananthakrishnan AN, Jagadeesh K, Dey K, Accelerating Medicines Partnership Program: Rheumatoid Arthritis and Systemic Lupus Erythematosus (AMP RA/SLE) Network, Daly MJ, Xavier RJ, Donlin LT, Anolik JH, Powell JE, Rao DA, Brenner MB, Gutierrez-Arcelus M, Luo Y, Sakaue S, Raychaudhuri S. Mapping the dynamic genetic regulatory architecture of HLA genes at single-cell resolution. Nat Genet, 2023, 55(12): 2255-2268.
doi: 10.1038/s41588-023-01586-6 pmid: 38036787 |
[33] |
Kumasaka N, Rostom R, Huang N, Polanski K, Meyer KB, Patel S, Boyd R, Gomez C, Barnett SN, Panousis NI, Schwartzentruber J, Ghoussaini M, Lyons PA, Calero-Nieto FJ, Göttgens B, Barnes JL, Worlock KB, Yoshida M, Nikolić MZ, Stephenson E, Reynolds G, Haniffa M, Marioni JC, Stegle O, Hagai T, Teichmann SA. Mapping interindividual dynamics of innate immune response at single-cell resolution. Nat Genet, 2023, 55(6): 1066-1075.
doi: 10.1038/s41588-023-01421-y pmid: 37308670 |
[34] | Emani PS, Liu JJ, Clarke D, Jensen M, Warrell J, Gupta C, Meng R, Lee CY, Xu SW, Dursun C, Lou SK, Chen YH, Chu ZY, Galeev T, Hwang A, Li YY, Ni PY, Zhou X, PsychENCODE Consortium, Bakken TE, Bendl J, Bicks L, Chatterjee T, Cheng LJ, Cheng YY, Dai Y, Duan ZH, Flaherty M, Fullard JF, Gancz M, Garrido-Martin D, Gaynor-Gillett S, Grundman J, Hawken N, Henry E, Hoffman GE, Huang A, Jiang YZ, Jin T, Jorstad NL, Kawaguchi R, Khullar S, Liu JY, Liu JH, Liu S, Ma SJ, Margolis M, Mazariegos S, Moore J, Moran JR, Nguyen E, Phalke N, Pjanic M, Pratt H, Quintero D, Rajagopalan AS, Riesenmy TR, Shedd N, Shi MM, Spector M, Terwilliger R, Travaglini KJ, Wamsley B, Wang GY, Xia Y, Xiao SH, Yang AC, Zheng SC, Gandal MJ, Lee D, Lein ES, Roussos P, Sestan N, Weng ZP, White KP, Won H, Girgenti MJ, Zhang J, Wang DF, Geschwind D, Gerstein M, PsychENCODE Consortium. Single-cell genomics and regulatory networks for 388 human brains. Science, 2024, 384(6698): eadi5199. |
[35] |
Fujita M, Gao ZM, Zeng L, McCabe C, White CC, Ng B, Green GS, Rozenblatt-Rosen O, Phillips D, Amir- Zilberstein L, Lee H, Pearse RV, Khan A, Vardarajan BN, Kiryluk K, Ye CJ, Klein HU, Wang G, Regev A, Habib N, Schneider JA, Wang YL, Young-Pearse T, Mostafavi S, Bennett DA, Menon V, De Jager PL. Cell subtype-specific effects of genetic variation in the Alzheimer's disease brain. Nat Genet, 2024, 56(4): 605-614.
doi: 10.1038/s41588-024-01685-y pmid: 38514782 |
[36] | Natri HM, Del Azodi CB, Peter L, Taylor CJ, Chugh S, Kendle R, Chung MI, Flaherty DK, Matlock BK, Calvi CL, Blackwell TS, Ware LB, Bacchetta M, Walia R, Shaver CM, Kropski JA, McCarthy DJ, Banovich NE. Cell-type-specific and disease-associated expression quantitative trait loci in the human lung. Nat Genet, 2024, 56(4): 595-604. |
[37] |
Zhang JF, Zhao HY. eQTL studies: from bulk tissues to single cells. J Genet Genomics, 2023, 50(12): 925-933.
doi: 10.1016/j.jgg.2023.05.003 pmid: 37207929 |
[38] |
Kang JB, Raveane A, Nathan A, Soranzo N, Raychaudhuri S. Methods and insights from single-cell expression quantitative trait loci. Annu Rev Genomics Hum Genet, 2023, 24: 277-303.
doi: 10.1146/annurev-genom-101422-100437 pmid: 37196361 |
[39] |
Dong XJ, Li XQ, Chang TW, Scherzer CR, Weiss ST, Qiu WL. powerEQTL: an R package and shiny application for sample size and power calculation of bulk tissue and single-cell eQTL analysis. Bioinformatics, 2021, 37(22): 4269-4271.
doi: 10.1093/bioinformatics/btab385 pmid: 34009297 |
[40] |
Mandric I, Schwarz T, Majumdar A, Hou KC, Briscoe L, Perez R, Subramaniam M, Hafemeister C, Satija R, Ye CJ, Pasaniuc B, Halperin E. Optimized design of single-cell RNA sequencing experiments for cell-type-specific eQTL analysis. Nat Commun, 2020, 11(1): 5504.
doi: 10.1038/s41467-020-19365-w pmid: 33127880 |
[41] |
Picelli S, Faridani OR, Björklund AK, Winberg G, Sagasser S, Sandberg R. Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc, 2014, 9(1): 171-181.
doi: 10.1038/nprot.2014.006 pmid: 24385147 |
[42] |
Slyper M, Porter CBM, Ashenberg O, Waldman J, Drokhlyansky E, Wakiro I, Smillie C, Smith-Rosario G, Wu JY, Dionne D, Vigneau S, Jané-Valbuena J, Tickle TL, Napolitano S, Su MJ, Patel AG, Karlstrom A, Gritsch S, Nomura M, Waghray A, Gohil SH, Tsankov AM, Jerby-Arnon L, Cohen O, Klughammer J, Rosen Y, Gould J, Nguyen L, Hofree M, Tramontozzi PJ, Li B, Wu CJ, Izar B, Haq R, Hodi FS, Yoon CH, Hata AN, Baker SJ, Suvà ML, Bueno R, Stover EH, Clay MR, Dyer MA, Collins NB, Matulonis UA, Wagle N, Johnson BE, Rotem A, Rozenblatt-Rosen O, Regev A. A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors. Nat Med, 2020, 26(5): 792-802.
doi: 10.1038/s41591-020-0844-1 pmid: 32405060 |
[43] | Ben-David E, Boocock J, Guo LH, Zdraljevic S, Bloom JS, Kruglyak L. Whole-organism eQTL mapping at cellular resolution with single-cell sequencing. eLife, 2021, 10: e65857. |
[44] | Ma TX, Li HC, Zhang XG. Discovering single-cell eQTLs from scRNA-seq data only. Gene, 2022, 829: 146520. |
[45] | Cuomo ASE, Heinen T, Vagiaki D, Horta D, Marioni JC, Stegle O. CellRegMap: a statistical framework for mapping context-specific regulatory variants using scRNA-seq. Mol Syst Biol, 2022, 18(8): e10663. |
[46] |
Ongen H, Buil A, Brown AA, Dermitzakis ET, Delaneau O. Fast and efficient QTL mapper for thousands of molecular phenotypes. Bioinformatics, 2016, 32(10): 1479-1485.
doi: 10.1093/bioinformatics/btv722 pmid: 26708335 |
[47] |
Strober BJ, Tayeb K, Popp J, Qi GH, Gordon MG, Perez R, Ye CJ, Battle A. SURGE: uncovering context-specific genetic-regulation of gene expression from single-cell RNA sequencing using latent-factor models. Genome Biol, 2024, 25(1): 28.
doi: 10.1186/s13059-023-03152-z pmid: 38254214 |
[48] |
Baran Y, Bercovich A, Sebe-Pedros A, Lubling Y, Giladi A, Chomsky E, Meir Z, Hoichman M, Lifshitz A, Tanay A. MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions. Genome Biol, 2019, 20(1): 206.
doi: 10.1186/s13059-019-1812-2 pmid: 31604482 |
[49] |
Flynn E, Almonte-Loya A, Fragiadakis GK. Single-Cell Multiomics. Annu Rev Biomed Data Sci, 2023, 6: 313-337.
doi: 10.1146/annurev-biodatasci-020422-050645 pmid: 37159875 |
[50] | Lee J, Yun S, Kim Y, Chen TL, Kellis M, Park C. Single-cell RNA sequencing data imputation using bi-level feature propagation. Brief Bioinform, 2024, 25(3): bbae209. |
[51] |
Choi YH, Kim JK. Dissecting cellular heterogeneity using single-cell RNA sequencing. Mol Cells, 2019, 42(3): 189-199.
doi: 10.14348/molcells.2019.2446 pmid: 30764602 |
[52] |
Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, Baglaenko Y, Brenner M, Loh PR, Raychaudhuri S. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods, 2019, 16(12): 1289-1296.
doi: 10.1038/s41592-019-0619-0 pmid: 31740819 |
[53] |
Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol, 2015, 33(5): 495-502.
doi: 10.1038/nbt.3192 pmid: 25867923 |
[54] | Baysoy A, Bai ZL, Satija R, Fan R. The technological landscape and applications of single-cell multi-omics. Nat Rev Mol Cell Biol, 2023, 24(10): 695-713. |
[55] | Lee J, Hyeon DY, Hwang D. Single-cell multiomics: technologies and data analysis methods. Exp Mol Med, 2020, 52(9): 1428-1442. |
[56] |
Eraslan G, Simon LM, Mircea M, Mueller NS, Theis FJ. Single-cell RNA-seq denoising using a deep count autoencoder. Nat Commun, 2019, 10(1): 390.
doi: 10.1038/s41467-018-07931-2 pmid: 30674886 |
[57] | Benafif S, Ni Raghallaigh H, McGrowder E, Saunders EJ, Brook MN, Saya S, Rageevakumar R, Wakerell S, James D, Chamberlain A, Taylor N, Hogben M, Benton B, D'Mello L, Myhill K, Mikropoulos C, Bowen-Perkins H, Rafi I, Ferris M, Beattie A, Kuganolipava S, Sevenoaks T, Bower J, Kumar P, Hazell S, deSouza NM, Antoniou A, Bancroft E, Kote-Jarai Z, Eeles R. The BARCODE1 Pilot: a feasibility study of using germline single nucleotide polymorphisms to target prostate cancer screening. BJU Int, 2022, 129(3): 325-336. |
[58] |
Nelson MR, Tipney H, Painter JL, Shen JD, Nicoletti P, Shen YF, Floratos A, Sham PC, Li MJ, Wang JW, Cardon LR, Whittaker JC, Sanseau P. The support of human genetic evidence for approved drug indications. Nat Genet, 2015, 47(8): 856-860.
doi: 10.1038/ng.3314 pmid: 26121088 |
[59] | King EA, Davis JW, Degner JF. Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLoS Genet, 2019, 15(12): e1008489. |
[60] | Majumdar A, Giambartolomei C, Cai N, Haldar T, Schwarz T, Gandal M, Flint J, Pasaniuc B. Leveraging eQTLs to identify individual-level tissue of interest for a complex trait. PLoS Comput Biol, 2021, 17(5): e1008915. |
[61] |
Xu XP, Wang BQ, Jiang ZY, Chen Q, Mao K, Shi XF, Yan C, Hu JT, Zha Y, Ma C, Zhang J, Guo R, Wang LG, Zhao SQ, Liu HS, Zhang QG, Zhang YB. Novel risk factors for craniofacial microsomia and assessment of their utility in clinic diagnosis. Hum Mol Genet, 2021, 30(11): 1045-1056.
doi: 10.1093/hmg/ddab055 pmid: 33615373 |
[62] | Van de Sande B, Lee JS, Mutasa-Gottgens E, Naughton B, Bacon W, Manning J, Wang Y, Pollard J, Mendez M, Hill J, Kumar N, Cao XH, Chen X, Khaladkar M, Wen J, Leach A, Ferran E. Applications of single-cell RNA sequencing in drug discovery and development. Nat Rev Drug Discov, 2023, 22(6): 496-520. |
[1] | 唐恒磊, 郑树涛, 李友, 钟望涛. 心源性卒中的遗传学研究进展[J]. 遗传, 2024, 46(5): 373-386. |
[2] | 于一凡, 欧阳臻, 郭娟, 赵瑜君, 黄璐琦. 植物质体基因工程调控元件研究进展[J]. 遗传, 2023, 45(6): 501-513. |
[3] | 韩熙, 罗富成. 单细胞转录组测序在少突胶质谱系细胞异质性与神经系统疾病中的应用[J]. 遗传, 2023, 45(3): 198-211. |
[4] | 袁萌, 李辉, 王守志. 大规模平行报告基因测定:一种分析基因表达调控的新技术[J]. 遗传, 2023, 45(10): 859-873. |
[5] | 李以格, 张丹丹. 后GWAS时代结直肠癌致病SNP功能机制的研究进展[J]. 遗传, 2021, 43(3): 203-214. |
[6] | 徐海冬, 宁博林, 牟芳, 李辉, 王宁. 选择性多聚腺苷酸化的生物学效应及其调控机制研究进展[J]. 遗传, 2021, 43(1): 4-15. |
[7] | 钱国清. 慢性阻塞性肺疾病全基因组关联研究进展[J]. 遗传, 2020, 42(9): 832-846. |
[8] | 刘思远, 易国强, 唐中林, 陈斌. 基于CRISPR/Cas9系统在全基因组范围内筛选功能基因及调控元件研究进展[J]. 遗传, 2020, 42(5): 435-443. |
[9] | 梁文权,侯豫,赵存友. 精神分裂症相关单核苷酸多态性调控microRNA功能研究进展[J]. 遗传, 2019, 41(8): 677-685. |
[10] | 杨超, 杨瑞馥, 崔玉军. 细菌全基因组关联研究的方法与应用[J]. 遗传, 2018, 40(1): 57-65. |
[11] | 王钰嫣,王子兴,胡耀达,王蕾,李宁,张彪,韩伟,姜晶梅. 全基因组关联研究通路分析方法现状[J]. 遗传, 2017, 39(8): 707-716. |
[12] | 周菲, 路史展, 高亮, 张娟娟, 林拥军. 植物质体基因工程:新的优化策略及应用[J]. 遗传, 2015, 37(8): 777-792. |
[13] | 陈开旭, 王为兰, 张富春, 郑秀芬. 人类身高的遗传学研究进展[J]. 遗传, 2015, 37(8): 741-755. |
[14] | 李金环, 寿佳, 吴强. CRISPR/Cas9系统在基因组DNA片段编辑中的应用[J]. 遗传, 2015, 37(10): 992-291. |
[15] | 王立, 徐颜美, 程竹君, 熊招平, 邓立彬. 胆固醇代谢紊乱的遗传学研究进展[J]. 遗传, 2014, 36(9): 857-863. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: