遗传 ›› 2011, Vol. 33 ›› Issue (9): 953-961.doi: 10.3724/SP.J.1005.2011.00953
王建起,曹文广
收稿日期:
2010-12-19
修回日期:
2011-01-26
出版日期:
2011-09-20
发布日期:
2011-09-25
通讯作者:
曹文广
E-mail:wgcao@yahoo.com
基金资助:
国家转基因重大专项“优质转基因肉羊新品种培育”(编号:2008ZX08008-003)资助
WANG Jian-Qi, CAO Wen-Guang
Received:
2010-12-19
Revised:
2011-01-26
Online:
2011-09-20
Published:
2011-09-25
摘要: 绵羊存在影响多胎性状的主效基因。BMPR-IB的突变体FecB对排卵数的增加具有增强效应, GDF-9的突变体FecGH和FecI及BMP-15的突变体FecXI、FecXH、FecXG、FecXB、FecXL和FecXR均为纯合子不育, 杂合子增加排卵数, 而GDF-9的突变体FecGE只有纯合子增加排卵数。Woodlands和Lacaune是遗传方式已知的多胎主效基因。Woodlands是与X染色体连锁的母系印迹基因, Lacaune与FecB类似对排卵数的增加具有增强效应。主效基因突变体单拷贝增加排卵数的效应具有差异性, FecB和FecXL的效应最高可增加1.5个, Woodlands最低可增加0.4个。研究绵羊多胎性状主效基因不仅有助于家畜的选种选育, 提高绵羊繁殖力, 而且为研究哺乳动物的繁殖机制开拓了新的方向。文章综述了绵羊多胎主效基因的来源、定位、表型、作用机制以及我国绵羊品种多胎主效基因的研究现状, 旨在为深入研究绵羊多胎主效基因的作用机制及为绵羊多胎品种的选育提供参考。
王建起,曹文广. 绵羊多胎主效基因研究进展[J]. 遗传, 2011, 33(9): 953-961.
WANG Jian-Qi, CAO Wen-An. Progress in exploring genes for high fertility in ewes[J]. HEREDITAS, 2011, 33(9): 953-961.
[1] Piper LR, Bindon BM. The Booroola Merino and the performance of medium non-Peppin crosses at Armidale. In: Piper LR, Bindon BM, Nethery RD, eds. The Booroola Merino. Proceedings of a Workshop. Armidale: CSIRO, 1982: 9-20.[2] Davis GH, Montgomery GW, Allison AJ, Kelly RW, Bray AR. Segregation of a major gene influencing fecundity in progeny of Booroola sheep. New Zealand J Agric Res, 1982, 25: 525-529.[3] Davis GH. Major genes affecting ovulation rate in sheep. Genet Sel Evol, 2005, 37(Suppl. 1): S11-S23.[4] Galloway SM, McNatty KP, Cambridge LM, Laitinen MPE, Juengel JL, Jokiranta TS, McLaren RJ, Luiro K, Dodds KG, Montgomery GW, Beattie AE, Davis GH, Ritvos O. Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infer-tility in a dosage-sensitive manner. Nat Genet, 2000, 25(3): 279-283.[5] Hanrahan JP, Gregan SM, Mulsant P, Mullen M, Davis GH, Powell R, Galloway SM. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are as-sociated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol Reprod, 2004, 70(4): 900-909.[6] Bodin L, Elsen JM, Poivey JP, SanCristobal-Gaudy M, Belloc JP, Eychenne F. Hyper-prolificacy in the French Lacaune sheep breed; a possible major gene. In: Proceedings of the 6th World Congress on Genetics Applied to Livestock Production. Armidale: University of New Eng-land, 1998, 27: 11-14.[7] Davis GH, Dodds KG, Wheeler R, Jay NP. Evidence that an imprinted gene on the X chromosome increases ovulation rate in sheep. Biol Reprod, 2001, 64(1): 216-221.[8] Shimasaki S, Moore RK, Otsuka F, Erickson GF. The bone morphogenetic protein system in mammalian reproduction. Endocr Rev, 2004, 25(1): 72-101.[9] 杨华, 刘守仁, 钟发刚, 杨永林, 张永胜. BMPR-IB基因在绵羊不同组织的表达差异性研究. 中国畜牧杂志, 2009, 45(11): 6-8.[10] 贾存灵, 李宁, 魏泽辉, 朱晓萍, 刘海英, 贾志海. 不同BMPRIB 基因型小尾寒羊同期发情处理后FSHR和LHR表达量的研究. 中国农业科学, 2005, 39(1): 170-175.[11] McNatty KP, Henderson KM. Gonadotrophins, fecundity genes and ovarian follicular function. J Steroid Bio-chem, 1987, 27(1-3): 365-373.[12] Yi SE, LaPolt PS, Yoon BS, Chen JY, Lu JK, Lyons KM. The type I BMP receptor BmprIB is essential for female reproductive function. Proc Natl Acad Sci USA, 2001, 98(14): 7994-7999.[13] Montgomery GW, Lord EA, Penty JM, Dodds KG, Broad TE, Cambridge L, Sunden SLF, Stone RT, Crawford AM. The Booroola fecundity (FecB) gene maps to sheep chromosome 6. Genomics, 1994, 22(1): 148-153.[14] Montgomery GW, Penty JM, Lord EA, Broom MF. The search for the Booroola (FecB) mutation. J Reprod Fertil Suppl, 1995, 49: 113-121.[15] Åström AK, Jin D, Imamura T, Röijer E, Rosenzweig B, Miyazono K, ten Dijke P, Stenman G. Chromosomal lo-calization of three human genes encoding bone morpho-genetic protein receptors. Mamm Genome, 1999, 10(3): 299-302.[16] Souza CJ, MacDougall C, Campbell BK, McNeilly AS, Baird DT. The Booroola (FecB) pheno-type is associated with a mutation in the bone morphogenetic receptor type 1B (BMPR1B) gene. J Endocrinol, 2001, 169(2): R1-R6.[17] Wilson T, Wu XY, Juengel JL, Ross IK, Lumsden JM, Lord EA, Dodds KG, Walling GA, McEwan JC, O’Connell AR, McNatty KP, Montgomery GW. Highly proli?c Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells. Biol Reprod, 2001, 64(4): 1225-1235.[18] Mulsant P, Lecerf F, Fabre S, Schibler L, Monget P, Lanneluc I, Pisselet C, Riquet J, Monniaux D, Callebaut I, Cribiu E, Thimonier J, Teyssier J, Bodin L, Cognié Y, Chitour N, Elsen JM. Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Mérino ewes. Proc Natl Acad Sci USA, 2001, 98(9): 5104-5109.[19] Pierre A, Pisselet C, Dupont J, Mandon-Pépin B , Monniaux D, Monget P, Fabre S. Molecular basis of bone morphogenetic protein-4 inhibitory action on progesterone secretion by ovine granulosa cells. J Mol Endocrinol, 2004, 33(3): 805-817.[20] Huse M, Chen YG, Massagué J, Kuriyan J. Crystal structure of the cytoplasmic domain of the type I TGF β receptor in complex with FKBP12. Cell, 1999, 96(3): 425-436.[21] Davis GH, Galloway SM, Ross IK, Gregan SM, Ward J, Nimbkar BV, Ghalsasi PM, Nimbkar C, Gray GD, Subandriyo, Inounu I, Tiesnamurti B, Martyniuk E, Eythorsdottir E, Mulsant P, Lecerf F, Hanrahan JP, Bradford GE, Wilson T. DNA tests in prolific sheep from eight countries provide new evidence on origin of the Booroola (FecB) mutation. Biol Reprod, 2002, 66(6): 1869-1874.[22] 王根林, 毛鑫智, Davis GH, 赵宗胜, 张利军, 曾永庆. DNA分析发现我国湖羊和小尾寒羊存在Booroola (FecB) 多胎基因. 南京农业大学学报, 2003, 26(1): 104-106.[23] McNatty KP, Heath DA, Hudson NL, Lun S, Juengel JL, Moore LG. Gonadotrophin-responsiveness of granulosa cells from bone morphogenetic protein 15 heterozygous mutant sheep. Reproduction, 2009, 138(3): 545-551.[24] Brawtal R, McNatty KP, Smith P, Heath DA, Hudson NL, Phillips DJ, McLeod BJ, Davis GH. Ovaries of ewes homozygous for the X-linked Inverdale gene (FecXI) are devoid of secondary and tertiary follicles but contain many abnormal structures. Biol Reprod, 1993, 49(5): 895-907.[25] Davis GH, Bruce GD, Dodds KG. Ovulation rate and litter size of prolific Inverdale (FecXI) and Hanna (FecXH) sheep. Proc Assoc Adv Anim Breed Genet, 2001, 14: 175-178.[26] Bodin L, Di Pasquale E, Fabre S, Bontoux M, Monget P, Persani L, Mulsant P. A novel mutation in the bone morphogenic protein 15 gene causing defective protein secretion is associated with both increased ovulation rate and sterility in Lacaune sheep. Endocrinology, 2007, 148(1): 393-400.[27] Monteagudo LV, Ponz R, Tejedor MT, Laviña A, Sierra I. A 17 bp deletion in the Bone Morphogenetic Protein 15(BMP15) gene is associated to increased proli?cacy in the Rasa Aragonesa sheep breed. Anim Reprod Sci, 2009, 110(1-2): 139-146.[28] Martinez-Royo A, Jurado JJ, Smulders JP, Martí JI, Ala-bart JL, Roche A, Fantova E, Bodin L, Mulsant P, Serrano M, Folch J, Calvo JH. A deletion in the bone morpho-genetic protein 15 gene causes sterility and increased proli?cacy in Rasa Aragonesa sheep. Anim Genet, 2008, 39(3): 294-297.[29] Sugiura K, Su YQ, Diaz FJ, Pangas SA, Sharma S, Wigglesworth K, O'Brien MJ, Matzuk MM, Shimasaki S, Eppig JJ. Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development, 2007, 134(14): 2593-2603.[30] Otsuka F, Yao ZX, Lee TH, Yamamoto S, Erickson GF, Shimasaki S. Bone morphogenetic protein-15 identification of target cells and biological functions. J Biol Chem, 2000, 275(50): 39523-39528.[31] Otsuka F, Shimasaki S. A negative feedback system between oocyte bone morphogenetic protein 15 and granulosa cell kit ligand: its role in regulating granulosa cell mitosis. Proc Natl Acad Sci USA, 2002, 99(12): 8060-8065.[32] Hussein TS, Froiland DA, Amato F, Thompson JG, Gil-christ RB. Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J Cell Sci, 2005, 118(22): 5257-5268.[33] Otsuka F, Moore RK, Iemura SI, Ueno N, Shimasaki S. Follistatin inhibits the function of the oocyte-derived factor BMP-15. Biochem Biophys Res Commun, 2001, 289(5): 961-966.[34] Silva JRV, van den Hurk R, van Tol HTA, Roelen BAJ, Figueiredo JR. Expression of growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), and BMP receptors in the ovaries of goats. Mol Reprod Dev, 2005, 70(1): 11-19.[35] Sun RZ, Lei L, Cheng L, Jin ZF, Zu SJ, Shan ZY, Wang ZD, Zhang JX, Liu ZH. Expression of GDF-9, BMP-15 and their receptors in mammalian ovary follicles. J Mol Histol, 2010, 41(6): 325-332.[36] Otsuka F, Shimasaki S. A novel function of bone morphogenetic protein-15 in the pituitary: selective synthesis and secretion of FSH by gonadotropes. Endocrinology, 2002, 143(12): 4938-4941.[37] Faure M-O, Nicol L, Fabre S, Fontaine J, Mohoric N, McNeilly A, Taragnat C. BMP-4 inhibits follicle-stimulating hormone secretion in ewe pituitary. J Endocrinol, 2005, 186(1): 109-121.[38] Yan CN, Wang P, DeMayo J, DeMayo FJ, Elvin JA, Carino C, Prasad SV, Skinner SS, Dunbar BS, Dube JL, Celeste AJ, Matzuk MM. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol Endocrinol, 2001, 15(6): 854-866.[39] Davis GH, McEwan JC, Fennessy PF, Dodds KG, Farquhar PA. Evidence for the presence of a major gene influencing ovulation rate on the X chromosome of sheep. Biol Reprod, 1991, 44(4): 620-624.[40] Hanrahan JP, Owen JB. Variation and repeatability of ovulation rate in Cambridge ewes. Proc. Brit. Soc. Anim. Prod. Winter meeting, 1985, paper 37.[41] Hanrahan JP. Evidence for single gene effects on ovulation rate in the Cambridge and Belclare breeds. In: Elsen JM, Bodin L, Thimonier J, eds. Major Genes for Repro-duction in Sheep. Paris: Inra, 1991: 93-102.[42] Jonmundsson JV, Adalsteinsson S. Single genes for fecundity in Icelandic sheep. In: Land RB, Robinson DW, eds. Genetics of Reproduction in Sheep. London: Butter-worths, 1985: 159-168.[43] Nicol L, Bishop SC, Pong-Wong R, Bendixen C, Holm LE, Rhind SM, McNeilly AS. Homozygosity for a single base-pair mutation in the oocyte-specific GDF9 gene results in sterility in Thoka sheep. Reproduction, 2009, 138(6): 921-933.[44] Silva BDM, Castro EA, Souza CJH, Paiva SR, Sartori R, Franco MM, Azevedo HC, Silva TASN, Vieira AMC, Neves JP, Melo EO. A new polymorphism in the Growth and Differentiation Factor 9(GDF9) gene is associated with increased ovulation rate and proli?cacy in homozygous sheep. Anim Genet, 2011, 42(1): 89-92.[45] Hayashi M, McGee EA, Min G, Klein C, Rose UM, van Duin M, Hsueh AJW. Recombinant growth differentiation factor-9 (GDF-9) enhances growth and differentiation of cultured early ovarian follicles. Endocrinology, 1999, 140(3): 1236-1244.[46] Vitt UA, Hayashi M, Klein C, Hsueh AJW. Growth differentiation factor-9 stimulates proliferation but suppresses the follicle-stimulating hormone-induced differentiation of cultured granulosa cells from small antral and preovulatory rat follicles. Biol Reprod, 2000, 62(2): 370-377.[47] Elvin JA, Clark AT, Wang P, Wolfman NM, Matzuk MM. Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol Endocrinol, 1999, 13(6): 1035-1048.[48] Joyce IM, Clark AT, Pendola FL, Eppig JJ.Comparison of recombinant growth differentiation factor-9 and oocyte regulation of KIT ligand messenger ribonucleic acid expression in mouse ovarian follicles. Biol Reprod, 2000, 63(6): 1669-1675.[49] Roh JS, Bondestam J, Mazerbourg S, Kaivo-Oja N, Groome N, Ritvos O, Hsueh AJW. Growth differentiation factor-9 stimulates inhibin production and activates Smad2 in cultured rat granulosa cells. Endocrinology, 2003, 144(1): 172-178.[50] Elvin JA, Yan CN, Matzuk MM. Growth differentiation factor-9 stimulates progesterone synthesis in granulosa cells via a prostaglandin E2/EP2 receptor pathway. Proc Natl Acad Sci USA, 2000, 97(18): 10288-10293.[51] Gui LM, Joyce IM. RNA interference evidence that growth differentiation factor-9 mediates oocyte regulation of cumulus expansion in mice. Biol Reprod, 2005, 72(1): 195-199.[52] Dong JW, Albertini DF, Nishimori K, Kumar TR, Lu NF, Matzuk MM. Growth differentiation factor-9 is required during early ovarian foliculogenesis. Nature, 1996, 383(6600): 531-535.[53] Bodensteiner KJ, Clay CM, Moeller CL, Sawyer HR. Molecular cloning of the ovine growth/differentiation factor-9 gene and expression of growth/differentiation factor-9 in ovine and bovine ovaries. Biol Reprod, 1999, 60(2): 381-386.[54] Walling GA, Bishop SC, Pong-Wong R, Gittus G, Russel AJF, Rhind SM. Detection of a major gene for litter size in Thoka Cheviot sheep using Bayesian segregation analyses. British Society of Animal Science, 2002, 75(3): 339-347.[55] Lecerf F, Mulsant P, Elsen JM, Bodin L. Localisation and mapping of a major gene controlling ovulation rate in Lacaune sheep. In: Proceedings of the 7th World Congress on Genetics Applied to Livestock Production. Montpellier: Inra, Castanet-Tolosan, 2002, 30: 753-756.[56] Malher X, Le Chère AK. High prolificacy in BelleIle sheep (Brittany, France): major effects of a putative single gene and the Awh colour gene on ovulation rate and litter size. Reprod Nut Dev, 1998, 38(4): 473-484.[57] Davis GH, Farquhar PA, O’Connell AR, Everett-Hincks JM, Wishart PJ, Galloway SM, Dodds KG. A putative autosomal gene increasing ovulation rate in Romney sheep. Anim Reprod Sci, 2006, 92(1-2): 65-73.[58] Davis GH, Dodds KG, Bruce GD. Combined effect of the Inverdale and Booroola prolificacy genes on ovulation rate in sheep. Proc Assoc Adv Anim Breed Genet, 1999, 13: 74-77.[59] 王公金, 窦德宇, 花卫华, 聂晓伟, 储国良, 徐晓波, 赵伟, 刘亚柏. 5个绵羊群体的BMPR-IB基因多态性分析. 江苏农业学报, 2007, 23(5): 447-450.[60] 陈勇, 雒秋江, 李登忠, 张亚军, 杨风云, 杨菊清, 朱文渊. 6群不同品种 (系) 绵羊BMPR-IB基因多态性及与产羔数的关系研究. 新疆农业大学学报, 2008, 31(2): 12-16.[61] 田秀娥, 孙红霞, 王永军. 3个绵羊群体BMPR-IB基因的遗传多态性及其对产羔数的影响. 西北农林科技大学学报 (自然科学版), 2009, 37(11): 31-36.[62] 倪建宏, 刘长斌, 张宾, 卢守亮.中国美利奴多胎品系绵羊BMPR-IB基因多态性与排卵数、产羔数的相关研究. 新疆农垦科技, 2009, 32(6): 22-23.[63] 陈晓军, 钟发刚, 罗淑萍, 王新华. 多浪羊BMPR-IB基因多态性的初步研究. 新疆农业科学, 2004, 41(1): 6-9.[64] 储明星, 桑林华, 王金玉, 方丽, 叶素成. 小尾寒羊高繁殖力候选基因BMP15和GDF 9的研究. 遗传学报, 2005, 32(1): 38-45. |
[1] | 赵志达,张莉. 基因组选择在绵羊育种中的应用[J]. 遗传, 2019, 41(4): 293-303. |
[2] | 胡广东,郝科兴,黄涛,曾维斌,谷新利,王静. 绵羊高效转基因通用型piggyBac转座子载体构建及功能验证[J]. 遗传, 2018, 40(8): 647-656. |
[3] | 夏青, 刘秋月, 王翔宇, 胡文萍, 李春艳, 贺小云, 储明星, 狄冉. 绵羊季节性繁殖分子机制及休情季节诱导绵羊发情配种技术[J]. 遗传, 2018, 40(5): 369-377. |
[4] | 韩晓斌, 徐冉, 段朋根, 于海跃, 罗越华, 李云海. 水稻斑点叶突变体spl101和spl102的筛选及候选基因鉴定[J]. 遗传, 2017, 39(4): 346-353. |
[5] | 袁金红, 李俊华, 袁娇娇, 贾克利, 李书粉, 邓传良, 高武军. 基于全基因组测序的MutMap方法在正向遗传学 研究中的应用[J]. 遗传, 2017, 39(12): 1168-1177. |
[6] | 赵永欣, 李孟华, 赵要风. 中国绵羊起源、进化和遗传多样性研究进展[J]. 遗传, 2017, 39(11): 958-973. |
[7] | 王伟, 王玉霜, 黄兰兰, 简子健, 王新华, 刘守仁, 皮文辉. siRNA干扰绵羊胚胎成纤维细胞Lig4基因增加同源重组载体重连修复效率[J]. 遗传, 2016, 38(9): 831-839. |
[8] | 陈天直, 赵兵令, 刘宇, 赵园园, 王海东, 范瑞文, 王鹏超, 董常生. GPR143在绵羊皮肤组织中的表达及定位分析[J]. 遗传, 2016, 38(7): 658-665. |
[9] | 李雪倩, 徐冉, 段朋根, 伍应保, 罗越华, 李云海. 水稻窄叶突变体zy17的遗传分析和候选基因鉴定[J]. 遗传, 2015, 37(6): 582-589. |
[10] | 高磊,沈敏,甘尚权,杨井泉,张译元. 绵羊CCNG1基因克隆及表达分析[J]. 遗传, 2015, 37(4): 374-381. |
[11] | 王慧, 李光, 王义权. 文昌鱼Hedgehog基因敲除和突变体表型分析[J]. 遗传, 2015, 37(10): 1036-1043. |
[12] | 赵巧玲, 王文波, 陈安利, 裘智勇, 夏定国, 钱荷英, 沈兴家. 家蚕两种新的类鹑斑突变体的遗传分析和SSR标记定位[J]. 遗传, 2014, 36(4): 369-375. |
[13] | 宋少娟, 郭亚平, 张学尧, 张建珍, 马恩波. 秀丽隐杆线虫抗铜突变体的筛选及SNP定位[J]. 遗传, 2014, 36(12): 1261-1268. |
[14] | 李峰利, 狄佳春, 赵亮, 陈旭升. 陆地棉皱缩叶突变体基因wr3的初步定位[J]. 遗传, 2014, 36(12): 1256-1260. |
[15] | 陈竹锋, 严维, 王娜, 张文辉, 谢刚, 卢嘉威, 简智华, 刘东风, 唐晓艳. 利用改进的MutMap方法克隆水稻雄性不育基因[J]. 遗传, 2014, 36(1): 85-93. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: