[1] Brevini TAL, Pennarossa G, Antonini S, Gandolfi F. Parthenogenesis as an approach to pluripotency: advantages and limitations involved. Stem Cell Rev, 2008, 4(3): 127-135.[2] Dighe V, Clepper L, Pedersen D, Byrne J, Ferguson B, Gokhale S, Penedo MCT, Wolf D, Mitalipov S. Heterozygous embryonic stem cell lines derived from nonhuman primate parthenotes. Stem Cells, 2008, 26(3): 756-766.[3] Alexander B, Coppola G, Di Berardino D, Rho GJ, St John E, Betts DH, King WA. The effect of 6-dimethylaminopurine (6-DMAP) and cycloheximide (CHX) on the development and chromosomal complement of sheep parthenogenetic and nuclear transfer embryos. Mol Reprod Dev, 2006, 73 (1): 20-30.[4] Wada T, Honda M, Minami I, Tooi N, Amagai Y, Nakatsuji N, Aiba K. Highly efficient differentiation and enrichment of spinal motor neurons derived from human and monkey embryonic stem cells. PLoS One, 2009, 4(8): e6722.[5] Yi YJ, Park CS. Parthenogenetic development of porcine oocytes treated by ethanol, cycloheximide, cytochalasin B and 6-dimethylaminopurine. Anim Reprod Sci, 2005, 86(3-4): 297-304.[6] Jessell TM. Neuronal specification in the spinal cord: in-ductive signals and transcriptional codes. Nat Rev Genet, 2000, 1(1): 20-29.[7] Wilson SI, Rydström A, Trimborn T, Willert K, Nusse R, Jessell TM, Edlund T. The status of Wnt signalling regulates neural and epidermal fates in the chick embryo. Nature, 2001, 411 (6835): 325-330.[8] Muhr J, Graziano E, Wilson S, Jessell TM, Edlund T. Convergent inductive signals specify midbrain, hindbrain, and spinal cord identity in gastrula stage chick embryos. Neuron, 1999, 23(4): 689-702.[9] Briscoe J, Ericson J. Specification of neuronal fates in the ventral neural tube. Curr Opin Neurobiol, 2001, 11(1): 43-49.[10] Qian HR, Yang Y. Neuron differentiation and neuritogenesis stimulated by N-acetylcysteine (NAC). Acta Pharmacol Sin, 2009, 30(7): 907-912.[11] Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, Nishikawa SI, Sasai Y. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron, 2000, 28(1): 31-40.[12] Anjomshoa M, Karbalaie K, Mardani M, Razavi S, Tanhaei S, Nasr-Esfahani MH, Baharvand H. Generation of motor neurons by coculture of retinoic acid-pretreated embryonic stem cells with chicken notochords. Stem Cells Dev, 2009, 18(2): 259-267.[13] Shan ZY, Liu F, Lei L, Li QM, Jin LH, Wu YS, Li X, Shen JL. Generation of dorsal spinal cord GABAergic neurons from mouse embryonic stem cells. Cell Reprogram, 2011, 13(1): 85- 91.[14] Nayak MS, Kim YS, Goldman M, Keirstead HS, Kerr DA. Cellular therapies in motor neuron diseases. Biochim Biophys Acta, 2006, 1762(11-12): 1128-1138.[15] Fois AF, Wotton CJ, Yeates D, Turner MR, Goldacre MJ. Cancer in patients with motor neuron disease, multiple sclerosis and Parkinson's disease: record linkage studies. J Neurol Neurosurg Psychiatry, 2010, 81(2): 215-221.[16] Karumbayaram S, Novitch BG, Patterson M, Umbach JA, Richter L, Lindgren A, Conway AE, Clark AT, Goldman SA, Plath K, Wiedau-Pazos M, Kornblum HI, Lowry WE. Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells, 2009, 27 (4): 806-811.[17] Rideout WM 3rd, Hochedlinger K, Kyba M, Daley GQ, Jaenisch R. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell, 2002, 109(1): 17-27.[18] 孟国良, 滕路, 薛友纺, 尚克刚. BALB/c小鼠胚胎干细胞系建立的方法学探讨. 遗传学报, 2002, 29 (7): 581-588.[19] Cibelli JB, Grant KA, Chapman KB, Cunniff K, Worst T, Green HL, Walker SJ, Gutin PH, Vilner L, Tabar V, Dominko T, Kane J, Wettstein PJ, Lanza RP, Studer L, Vrana KE, West MD. Parthenogenetic stem cells in non-human primates. Science, 2002, 295(5556): 81 |