遗传 ›› 2016, Vol. 38 ›› Issue (6): 508-522.doi: 10.16288/j.yczz.15-512
吴瑜1, 2, 冯旭2, 3, 高岚1, 焦保卫2
收稿日期:
2015-12-18
修回日期:
2016-01-18
出版日期:
2016-06-20
发布日期:
2016-03-14
通讯作者:
焦保卫,博士,研究员,研究方向:遗传印记对于发育的调控作用。E-mail: jiaobaowei@mail.kiz.ac.cn作者简介:
吴瑜,硕士,专业方向:遗传印记对于发育的调控作用。E-mail: 393968099@qq.com冯旭,硕士,专业方向:遗传印记对于发育的调控作用。E-mail: cheerfulloster@protonmail.com吴瑜和冯旭为并列第一作者。
基金资助:
Yu Wu1, 2, Xu Feng2, 3, Lan Gao1, Baowei Jiao2
Received:
2015-12-18
Revised:
2016-01-18
Online:
2016-06-20
Published:
2016-03-14
Supported by:
摘要: 印记基因是一类单等位表达的基因,数量少但功能强大,构成了基因组印记这一表观遗传领域中的独特现象,来源于不同亲本的印记基因在个体发育过程中承担着不同的重要功能。除了印记基因状态的建立、保持,人们围绕印记基因在发育进程中的功能做了大量研究。印记基因最初在核移植研究中被发现,早期研究聚焦在个别基因簇上。随着组学技术的引入,更多的印记基因被筛选和鉴定出来,这也引起了该领域内的热烈讨论和关注。随着全基因组DNA甲基化及组蛋白修饰等研究方法的发展,人们对印记基因的两个经典调控模型又提出新的看法和思考,尤其是最近的一些研究成果对于解释印记基因在哺乳动物中的高度保守性及其存在的意义具有重要启示。本文立足于最新研究进展,从印记基因的特征和基本规律、发育中的调控作用、机制、研究方法、进化以及环境对其影响等几个方面进行了综述,旨在为人们全面了解印记基因概况及研究趋势提供参考和指导。
吴瑜, 冯旭, 高岚, 焦保卫. 印记基因:发育中的重要调节因子[J]. 遗传, 2016, 38(6): 508-522.
Yu Wu, Xu Feng, Lan Gao, Baowei Jiao. Imprinted genes: important regulators in development[J]. HEREDITAS(Beijing), 2016, 38(6): 508-522.
[1] Crouse HV, Brown A, Mumford BC. L-chromosome inheritance and the problem of chromosome “imprinting” in Sciara ( Sciaridae , Diptera ). Chromosoma , 1971, 34(3): 324-339. [2] Cooper DW. Directed genetic change model for X chromosome inactivation in eutherian mammals. Nature , 1971, 230(5292): 292-294. [3] McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell , 1984, 37(1): 179-183. [4] DeChiara TM, Robertson EJ, Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell , 1991, 64(4): 849-859. [5] Barlow DP, Stöger R, Herrmann BG, Saito K, Schweifer N. The mouse insulin-like growth-factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature , 1991, 349(6304): 84-87. [6] Rachmilewitz J, Goshen R, Ariel I, Schneider T, de Groot N, Hochberg A. Parental imprinting of the human H19 gene. FEBS Lett , 1992, 309(1): 25-28. [7] Barlow DP. Genomic imprinting: a mammalian epigenetic discovery model. Annu Rev Genet , 2011, 45: 379-403. [8] Lin MS, Zhang A, Fujimoto A. Asynchronous DNA- replication between 15q11.2q12 homologs- cytogenetic evidence for maternal imprinting and delayed replication. Hum Genet , 1995, 96(5): 572-576. [9] Zwart R, Sleutels F, Wutz A, Schinkel AH, Barlow DP. Bidirectional action of the Igf2r imprint control element on upstream and downstream imprinted genes. Genes Dev , 2001, 15(18): 2361-2366. [10] Fitzpatrick GV, Soloway PD, Higgins MJ. Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat Genet , 2002, 32(3): 426-431. [11] Thorvaldsen JL, Duran KL, Bartolomei MS. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2 . Genes Dev , 1998, 12(23): 3693-3702. [12] Bell AC, Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature , 2000, 405(6785): 482-485. [13] Redrup L, Branco MR, Perdeaux ER, Krueger C, Lewis A, Santos F, Nagano T, Cobb BS, Fraser P, Reik W. The long noncoding RNA Kcnq1ot1 organises a lineage- specific nuclear domain for epigenetic gene silencing. Development , 2009, 136(4): 525-530. [14] Khatib H. Is it genomic imprinting or preferential expression?. Bioessays , 2007, 29(10): 1022-1028. [15] Gregg C, Zhang JW, Butler JE, Haig D, Dulac C. Sex- specific parent-of-origin allelic expression in the mouse brain. Science , 2010, 329(5992): 682-685. [16] Gregg C, Zhang JW, Weissbourd B, Luo SJ, Schroth GP, Haig D, Dulac C. High-resolution analysis of parent- of-origin allelic expression in the mouse brain. Science , 2010, 329(5992): 643-648. [17] Goncalves A, Leigh-Brown S, Thybert D, Stefflova K, Turro E, Flicek P, Brazma A, Odom DT, Marioni JC. Extensive compensatory cis-trans regulation in the evolution of mouse gene expression. Genome Res , 2012, 22(12): 2376-2384. [18] Bonthuis PJ, Huang WC, Stacher Horndli CN, Ferris E, Cheng T, Gregg C. Noncanonical genomic imprinting effects in offspring. Cell Rep , 2015, 12(6): 979-991. [19] Varrault A, Gueydan C, Delalbre A, Bellmann A, Houssami S, Aknin C, Severac D, Chotard L, Kahli M, Le Digarcher A, Pavlidis P, Journot L. Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev Cell , 2006, 11(5): 711-722. [20] Gabory A, Ripoche MA, Le Digarcher A, Watrin F, Ziyyat A, Forne T, Jammes H, Ainscough JFX, Surani MA, Journot L, Dandolo L. H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. Development , 2009, 136(20): 3413-3421. [21] Lui JC, Finkielstain GP, Barnes KM, Baron J. An imprinted gene network that controls mammalian somatic growth is down-regulated during postnatal growth deceleration in multiple organs. Am J Physiol Regul Integr Comp Physiol , 2008, 295(1): R189-R196. [22] Al Adhami H, Evano B, Le Digarcher A, Gueydan C, Dubois E, Parrinello H, Dantec C, Bouschet T, Varrault A, Journot L. A systems-level approach to parental genomic imprinting: the imprinted gene network includes extracellular matrix genes and regulates cell cycle exit and differentiation. Genome Res , 2015, 25(3): 353-367. [23] Cleaton MAM, Edwards CA, Ferguson-Smith AC. Phenotypic outcomes of imprinted gene models in mice: elucidation of pre- and postnatal functions of imprinted genes. Annu Rev Genomics Hum Genet , 2014, 15: 93-126. [24] Beechey CV. Peg1/Mest locates distal to the currently defined imprinting region on mouse proximal chromosome 6 and identifies a new imprinting region affecting growth. Cytogenet Cell Genet , 2000, 90(3-4): 309-314. [25] Beechey CV, Ball ST, Townsend KMS, Jones J. The mouse chromosome 7 distal imprinting domain maps to G-bands F4/F5. Mamm Genome , 1997, 8(4): 236-240. [26] Germain-Lee EL, Schwindinger W, Crane JL, Zewdu R, Zweifel LS, Wand G, Huso DL, Saji M, Ringel MD, Levine MA. A mouse model of albright hereditary osteodystrophy generated by targeted disruption of exon 1 of the Gnas gene. Endocrinology , 2005, 146(11): 4697- 4709. [27] Kayser V, Elfassi IE, Aubel B, Melfort M, Julius D, Gingrich JA, Hamon M, Bourgoin S. Mechanical, thermal and formalin-induced nociception is differentially altered in 5-HT 1A -/-, 5-HT 1B -/-, 5-HT 2A -/-, 5-HT 3A -/- and 5-HTT-/- knock-out male mice. Pain , 2007, 130(3): 235-248. [28] Zhou QY, Quaife CJ, Palmiter RD. Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature , 1995, 374(6523): 640-643. [29] Guillemot F, Caspary T, Tilghman SM, Copeland NG, Gilbert DJ, Jenkins NA, Anderson DJ, Joyner AL, Rossant J, Nagy A. Genomic imprinting of Mash2 , a mouse gene required for trophoblast development. Nat Genet , 1995, 9(3): 235-242. [30] Yan Y, Frisén J, Lee MH, Massagué J, Barbacid M. Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev , 1997, 11(8): 973-983. [31] Yuasa S, Onizuka T, Shimoji K, Ohno Y, Kageyama T, Yoon SH, Egashira T, Seki T, Hashimoto H, Nishiyama T, Kaneda R, Murata M, Hattori F, Makino S, Sano M, Ogawa S, Prall OWJ, Harvey RP, Fukuda K. Zac1 is an essential transcription factor for cardiac morphogenesis. Circ Res , 2010, 106(6): 1083-1091. [32] Boelen A, Kwakkel J, Wieland CW, St Germain DL, Fliers E, Hernandez A. Impaired bacterial clearance in type 3 deiodinase-deficient mice infected with Streptococcus pneumoniae . Endocrinology , 2009, 150(4): 1984-1990. [33] Searle AG, Beechey CV. Genome imprinting phenomena on mouse chromosome-7. Genet Res , 1990, 56(2-3): 237-244. [34] Okae H, Hiura H, Nishida Y, Funayama R, Tanaka S, Chiba H, Yaegashi N, Nakayama K, Sasaki H, Arima T. Re-investigation and RNA sequencing-based identification of genes with placenta-specific imprinted expression. Hum Mol Genet , 2012, 21(3): 548-558. [35] Curley JP, Barton S, Surani A, Keverne EB. Coadaptation in mother and infant regulated by a paternally expressed imprinted gene. Proc Biol Sci , 2004, 271(1545): 1303-1309. [36] Lefebvre L, Viville S, Barton SC, Ishino F, Keverne EB, Surani MA. Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest. Nat Genet , 1998, 20(2): 163-169. [37] Keniry A, Oxley D, Monnier P, Kyba M, Dandolo L, Smits G, Reik W. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r . Nat Cell Biol , 2012, 14(7): 659-665. [38] Guillemot F, Nagy A, Auerbach A, Rossant J, Joyner AL. Essential role of Mash -2 in extraembryonic development. Nature , 1994, 371(6495): 333-336. [39] Ono R, Nakamura K, Inoue K, Naruse M, Usami T, Wakisaka-Saito N, Hino T, Suzuki-Migishima R, Ogonuki N, Miki H, Kohda T, Ogura A, Yokoyama M, Kaneko-Ishino T, Ishino F. Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat Genet , 2006, 38(1): 101-106. [40] Frank D, Fortino W, Clark L, Musalo R, Wang WX, Saxena A, Li CM, Reik W, Ludwig T, Tycko B. Placental overgrowth in mice lacking the imprinted gene lpl . Proc Natl Acad Sci USA , 2002, 99(11): 7490-7495. [41] Zhang PM, Wong C, DePinho RA, Harper JW, Elledge SJ. Cooperation between the Cdk inhibitors p27 KIP1 and p57 KIP2 in the control of tissue growth and development. Genes Dev , 1998, 12(20): 3162-3167. [42] Zwart R, Verhaagh S, Buitelaar M, Popp-Snijders C, Barlow DP. Impaired activity of the extraneuronal monoamine transporter system known as uptake-2 in Orct3/Slc22a3 -deficient mice. Mol Cell Biol , 2001, 21(13): 4188-4196. [43] Constância M, Hemberger M, Hughes J, Dean W, Ferguson-Smith A, Fundele R, Stewart F, Kelsey G, Fowden A, Sibley C, Reik W. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature , 2002, 417(6892): 945-948. [44] Arima T, Hata K, Tanaka S, Kusumi M, Li E, Kato K, Shiota K, Sasaki H, Wake N. Loss of the maternal imprint in Dnmt3L mat-/- mice leads to a differentiation defect in the extraembryonic tissue. Dev Biol , 2006, 297(2): 361-373. [45] Hagemann LJ, Peterson AJ, Weilert LL, Lee RSF, Tervit HR. In vitro and early in vivo development of sheep gynogenones and putative androgenones. Mol Reprod Dev , 1998, 50(2): 154-162. [46] Takahashi K, Kobayashi T, Kanayama N. p57 Kip2 regulates the proper development of labyrinthine and spongiotrophoblasts. Mol Hum Reprod , 2000, 6(11): 1019-1025. [47] Wang ZQ, Fung MR, Barlow DP, Wagner EF. Regulation of embryonic growth and lysosomal targeting by the imprinted Igf2/Mpr gene. Nature , 1994, 372(6505): 464-467. [48] Silva D, Venihaki M, Guo WH, Lopez MF. Igf2 deficiency results in delayed lung development at the end of gestation. Endocrinology , 2006, 147(12): 5584-5591. [49] Charalambous M, Smith FM, Bennett WR, Crew TE, Mackenzie F, Ward A. Disruption of the imprinted Grb10 gene leads to disproportionate overgrowth by an Igf2 -independent mechanism. Proc Natl Acad Sci USA , 2003, 100(14): 8292-8297. [50] Lau MM, Stewart CE, Liu Z, Bhatt H, Rotwein P, Stewart CL. Loss of the imprinted IGF2 /cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality. Genes Dev , 1994, 8(24): 2953-2963. [51] Plagge A, Gordon E, Dean W, Boiani R, Cinti S, Peters J, Kelsey G. The imprinted signaling protein XLαs is required for postnatal adaptation to feeding. Nat Genet , 2004, 36(8): 818-826. [52] Schaller F, Watrin F, Sturny R, Massacrier A, Szepetowski P, Muscatelli F. A single postnatal injection of oxytocin rescues the lethal feeding behaviour in mouse newborns deficient for the imprinted Magel2 gene. Hum Mol Genet , 2010, 19(24): 4895-4905. [53] Medina MC, Molina J, Gadea Y, Fachado A, Murillo M, Simovic G, Pileggi A, Hernandez A, Edlund H, Bianco AC. The thyroid hormone-inactivating type III deiodinase is expressed in mouse and human β-cells and its targeted inactivation impairs insulin secretion. Endocrinology , 2011, 152(10): 3717-3727. [54] Hernandez A, Martinez ME, Fiering S, Galton VA, St Germain D. Type 3 deiodinase is critical for the maturation and function of the thyroid axis. J Clin Invest , 2006, 116(2): 476-484. [55] Luedi PP, Hartemink AJ, Jirtle RL. Genome-wide prediction of imprinted murine genes. Genome Res , 2005, 15(6): 875-884. [56] Babak T, DeVeale B, Armour C, Raymond C, Cleary MA, van der Kooy D, Johnson JM, Lim LP. Global survey of genomic imprinting by transcriptome sequencing. Curr Biol , 2008, 18(22): 1735-1741. [57] Luedi PP, Dietrich FS, Weidman JR, Bosko JM, Jirtle RL, Hartemink AJ. Computational and experimental identification of novel human imprinted genes. Genome Res , 2007, 17(12): 1723-1730. [58] Ideraabdullah FY, Vigneau S, Bartolomei MS. Genomic imprinting mechanisms in mammals. Mutat Res , 2008, 647(1-2): 77-85. [59] Kaneda M. Genomic imprinting in mammals-epigenetic parental memories. Differentiation , 2011, 82(2): 51-56. [60] Bird A. DNA methylation patterns and epigenetic memory. Genes Dev , 2002, 16(1): 6-21. [61] Feng SH, Cokus SJ, Zhang XY, Chen PY, Bostick M, Goll MG, Hetzel J, Jain J, Strauss SH, Halpern ME, Ukomadu C, Sadler KC, Pradhan S, Pellegrini M, Jacobsen SE. Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci USA , 2010, 107(19): 8689-8694. [62] Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O'Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R, Ren B, Thomson JA, Evans RM, Ecker JR. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature , 2011, 471(7336): 68-73. [63] Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev , 2011, 25(10): 1010-1022. [64] Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science , 2001, 293(5532): 1089-1093. [65] Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet , 2001, 2(1): 21-32. [66] Nakagaki A, Osanai H, Kishino T. Imprinting analysis of the mouse chromosome 7C region in DNMT1-null embryos. Gene , 2014, 553(1): 63-68. [67] Plass C, Shibata H, Kalcheva I, Mullins L, Kotelevtseva N, Mullins J, Kato R, Sasaki H, Hirotsune S, Okazaki Y, Held WA, Hayashizaki Y, Chapman VM. Identification of Grf1 on mouse chromosome 9 as an imprinted gene by RLGS-M. Nat Genet , 1996, 14(1): 106-109. [68] Singh P, Wu XW, Lee DH, Li AX, Rauch TA, Pfeifer GP, Mann JR, Szabo PE. Chromosome-wide analysis of parental allele-specific chromatin and DNA methylation. Mol Cell Biol , 2011, 31(8): 1757-1770. [69] Smith RJ, Dean W, Konfortova G, Kelsey G. Identification of novel imprinted genes in a genome-wide screen for maternal methylation. Genome Res , 2003, 13(4): 558-569. [70] Hiura H, Sugawara A, Ogawa H, John RM, Miyauchi N, Miyanari Y, Horiike T, Li YF, Yaegashi N, Sasaki H, Kono T, Arima T. A tripartite paternally methylated region within the Gpr1-Zdbf2 imprinted domain on mouse chromosome 1 identified by meDIP-on-chip. Nucleic Acids Res , 2010, 38(15): 4929-4945. [71] Peters J, Wroe SF, Wells CA, Miller HJ, Bodle D, Beechey CV, Williamson CM, Kelsey G. A cluster of oppositely imprinted transcripts at the Gnas locus in the distal imprinting region of mouse chromosome 2. Proc Natl Acad Sci USA , 1999, 96(7): 3830-3835. [72] Kawahara M, Wu Q, Takahashi N, Morita S, Yamada K, Ito M, Ferguson-Smith AC, Kono T. High-frequency generation of viable mice from engineered bi-maternal embryos. Nat Biotechnol , 2007, 25(9): 1045-1050. [73] Yu WS, McIntosh C, Lister R, Zhu I, Han YX, Ren JK, Landsman D, Lee E, Briones V, Terashima M, Leighty R, Ecker JR, Muegge K. Genome-wide DNA methylation patterns in LSH mutant reveals de-repression of repeat elements and redundant epigenetic silencing pathways. Genome Res , 2014, 24(10): 1613-1623. [74] Lindroth AM, Park YJ, McLean CM, Dokshin GA, Persson JM, Herman H, Pasini D, Miro X, Donohoe ME, Lee JT, Helin K, Soloway PD. Antagonism between DNA and H3K27 methylation at the imprinted Rasgrf1 locus. PLoS Genet , 2008, 4(8): e1000145. [75] Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson- Smith AC, Feil R, Fraser P. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science , 2008, 322(5908): 1717-1720. [76] Marcho C, Bevilacqua A, Tremblay KD, Mager J. Tissue-specific regulation of Igf2r/Airn imprinting during gastrulation. Epigenetics Chromatin , 2015, 8: 10. [77] Qi SK, Wang ZQ, Li PS, Wu QH, Shi TL, Li JW, Wong JM. Non-germ line restoration of genomic imprinting for a small subset of imprinted genes in ubiquitin-like PHD and RING finger domain-containing 1 (Uhrf1) null mouse embryonic stem cells. J Biol Chem , 2015, 290(22): 14181-14191. [78] Guo X, Wang L, Li J, Ding ZY, Xiao JX, Yin XT, He S, Shi P, Dong LP, Li GH, Tian CL, Wang JW, Cong Y, Xu YH. Structural insight into autoinhibition and histone H3- induced activation of DNMT3A. Nature , 2015, 517(7536): 640-644. [79] Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet , 2009, 10(5): 295-304. [80] Sanli I, Feil R. Chromatin mechanisms in the developmental control of imprinted gene expression. Int J Biochem Cell Biol , 2015, 67: 139-147. [81] Zhao LX, Zhao GP, Zhou HM. Review on the genomic imprinting at the mammalian DLK1-DIO3 cluster. Hereditas (Beijing) , 2010, 32(8): 769-778. 赵丽霞, 赵高平, 周欢敏. 哺乳动物印记域 DLK1- DIO3 的研究进展. 遗传, 2010, 32(8): 769-778. [82] Kota SK, Llères D, Bouschet T, Hirasawa R, Marchand A, Begon-Pescia C, Sanli I, Arnaud P, Journot L, Girardot M, Feil R. ICR noncoding RNA expression controls imprinting and DNA replication at the Dlk1-Dio3 domain. Dev Cell , 2014, 31(1): 19-33. [83] Charalambous M, Ferron SR, da Rocha ST, Murray AJ, Rowland T, Ito M, Schuster-Gossler K, Hernandez A, Ferguson-Smith AC. Imprinted gene dosage is critical for the transition to independent life. Cell Metab , 2012, 15(2): 209-221. [84] MacDonald WA, Sachani SS, White CR, Mann MR. A role for chromatin topology in imprinted domain regulation. Biochem Cell Biol , 2016, 94(1): 43-55. [85] Wang X, Sun Q, McGrath SD, Mardis ER, Soloway PD, Clark AG. Transcriptome-wide identification of novel imprinted genes in neonatal mouse brain. PLoS One , 2008, 3(12): e3839. [86] DeVeale B, van der Kooy D, Babak T. Critical evaluation of imprinted gene expression by RNA-Seq: a new perspective. PLoS Genet , 2012, 8(3): e1002600. [87] Hayden EC. RNA studies under fire. Nature , 2012, 484(7395): 428. [88] Kelsey G, Bartolomei MS. Imprinted genes... and the number is?. PLoS Genet , 2012, 8(3): e1002601. [89] Crowley JJ, Zhabotynsky V, Sun W, Huang SP, Pakatci IK, Kim Y, Wang JR, Morgan AP, Calaway JD, Aylor DL, Yun ZN, Bell TA, Buus RJ, Calaway ME, Didion JP, Gooch TJ, Hansen SD, Robinson NN, Shaw GD, Spence JS, Quackenbush CR, Barrick CJ, Nonneman RJ, Kim K, Xenakis J, Xie YY, Valdar W, Lenarcic AB, Wang W, Welsh CE, Fu CP, Zhang ZJ, Holt J, Guo ZS, Threadgill DW, Tarantino LM, Miller DR, Zou F, McMillan L, Sullivan PF, Pardo-Manuel de Villena F. Analyses of allele-specific gene expression in highly divergent mouse crosses identifies pervasive allelic imbalance. Nat Genet , 2015, 47(4): 353-360. [90] Huang SP, Holt J, Kao CY, McMillan L, Wang W. A novel multi-alignment pipeline for high-throughput sequencing data. Database (Oxford) , 2014, 2014, doi:10.1093/database/bau057. [91] Zhang ZJ, Huang SP, Wang J, Zhang X, de Villena FPM, McMillan L, Wang W. GeneScissors: a comprehensive approach to detecting and correcting spurious transcriptome inference owing to RNA-seq reads misalignment. Bioinformatics , 2013, 29(13): i291-i299. [92] Zou F, Sun W, Crowley JJ, Zhabotynsky V, Sullivan PF, de Villena FPM. A novel statistical approach for jointly analyzing RNA-Seq data from F 1 reciprocal crosses and inbred lines. Genetics , 2014, 197(1): 389-399. [93] Shaffer B, McGraw S, Xiao SC, Chan D, Trasler J, Chaillet JR. The DNMT1 intrinsically disordered domain regulates genomic methylation during development. Genetics , 2015, 199 (2): 533-541. [94] Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, Sasaki H. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature , 2004, 429(6994): 900-903. [95] Kato Y, Kaneda M, Hata K, Kumaki K, Hisano M, Kohara Y, Okano M, Li E, Nozaki M, Sasaki H. Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum Mol Genet , 2007, 16(19): 2272-2280. [96] Hanna CW, Kelsey G. The specification of imprints in mammals. Heredity (Edinb) , 2014, 113(2): 176-183. [97] Yamaguchi S, Shen L, Liu YT, Sendler D, Zhang Y. Role of Tet1 in erasure of genomic imprinting. Nature , 2013, 504(7480): 460-464. [98] Cooper WN, Constancia M. How genome-wide approaches can be used to unravel the remaining secrets of the imprintome. Brief Funct Genomics , 2010, 9(4): 315-328. [99] Tycko B. Allele-specific DNA methylation: beyond imprinting. Hum Mol Genet , 2010, 19(R2): R210-R220. [100] Avila L, Yuen RK, Diego-Alvarez D, Peñaherrera MS, Jiang R, Robinson WP. Evaluating DNA methylation and gene expression variability in the human term placenta. Placenta , 2010, 31(12): 1070-1077. [101] Choufani S, Shapiro JS, Susiarjo M, Butcher DT, Grafodatskaya D, Lou YL, Ferreira JC, Pinto D, Scherer SW, Shaffer LG, Coullin P, Caniggia I, Beyene J, Slim R, Bartolomei MS, Weksberg R. A novel approach identifies new differentially methylated regions (DMRs) associated with imprinted genes. Genome Res , 2011, 21(3): 465-476. [102] Schroeder DI, LaSalle JM. How has the study of the human placenta aided our understanding of partially methylated genes? Epigenomics , 2013, 5 (6): 645-654. [103] Wang L, Zhang J, Duan JL, Gao XX, Zhu W, Lu XY, Yang L, Zhang J, Li GQ, Ci WM, Li W, Zhou Q, Aluru N, Tang FC, He C, Huang XX, Liu J. Programming and inheritance of parental DNA methylomes in mammals. Cell , 2014, 157(4): 979-991. [104] Shen S, Qu YC, Zhang J. The application of next generation sequencing on epigenetic study. Hereditas (Beijing) , 2014, 36(3): 256-275. 沈圣, 屈彦纯, 张军. 下一代测序技术在表观遗传学研究中的重要应用及进展. 遗传, 2014, 36(3): 256-275. [105] Xie W, Barr CL, Kim A, Yue F, Lee AY, Eubanks J, Dempster EL, Ren B. Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell , 2012, 148(4): 816-831. [106] Shirane K, Toh H, Kobayashi H, Miura F, Chiba H, Ito T, Kono T, Sasaki H. Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non- CpG methylation and role of DNA methyltransferases. PLoS Genet , 2013, 9(4): e1003439. [107] Miri K, Latham K, Panning B, Zhong ZS, Andersen A, Varmuza S. The imprinted polycomb group gene Sfmbt2 is required for trophoblast maintenance and placenta development. Development , 2013, 140(22): 4480-4489. [108] Wang Q, Li KY, Zhang DX, Li JY, Xu GY, Zheng JX, Yang N, Qu LJ. Next-generation sequencing techniques reveal that genomic imprinting is absent in day-old Gallus gallus domesticus brains. PLoS One , 2015, 10(7): e0132345. [109] Morison IM, Reeve AE. A catalogue of imprinted genes and parent-of-origin effects in humans and animals. Hum Mol Genet , 1998, 7(10): 1599-1609. [110] Allen E, Horvath S, Tong F, Kraft P, Spiteri E, Riggs AD, Marahrens Y. High concentrations of long interspersed nuclear element sequence distinguish monoallelically expressed genes. Proc Natl Acad Sci USA , 2003, 100(17): 9940-9945. [111] Greally JM. Short interspersed transposable elements (SINEs) are excluded from imprinted regions in the human genome. Proc Natl Acad Sci USA , 2002, 99(1): 327-332. [112] Suzuki S, Ono R, Narita T, Pask AJ, Shaw G, Wang CS, Kohda T, Alsop AE, Graves JAM, Kohara Y, Ishino F, Renfree MB, Kaneko-Ishino T. Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting. PLoS Genet , 2007, 3(4): e55. [113] Evans HK, Weidman JR, Cowley DO, Jirtle RL. Comparative phylogenetic analysis of Blcap/Nnat reveals eutherian-specific imprinted gene. Mol Biol Evol , 2005, 22(8): 1740-1748. [114] Wood AJ, Roberts RG, Monk D, Moore GE, Schulz R, Oakey RJ. A screen for retrotransposed imprinted genes reveals an association between x chromosome homology and maternal germ-line methylation. PLoS Genet , 2007, 3(2): e20. [115] Rademacher K, Schröder C, Kanber D, Klein-Hitpass L, Wallner S, Zeschnigk M, Horsthemke B. Evolutionary origin and methylation status of human intronic CpG islands that are not present in mouse. Genome Biol Evol , 2014, 6(7): 1579-1588. [116] Haig D. The kinship theory of genomic imprinting. Annu Rev Ecol Syst , 2000, 31: 9-32. [117] Wolf JB, Hager R. A maternal-offspring coadaptation theory for the evolution of genomic imprinting. PLoS Biol , 2006, 4(12): 2238-2243. [118] Stouder C, Somm E, Paoloni-Giacobino A. Prenatal exposure to ethanol: a specific effect on the H19 gene in sperm. Reprod Toxicol , 2011, 31(4): 507-512. [119] Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, Slagboom PE, Heijmans BT. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet , 2009, 18(21): 4046-4053. [120] Haggarty P, Hoad G, Campbell DM, Horgan GW, Piyathilake C, McNeill G. Folate in pregnancy and imprinted gene and repeat element methylation in the offspring. Am J Clin Nutr , 2013, 97(1): 94-99. [121] Hiura H, Okae H, Miyauchi N, Sato F, Sato A, van de Pette M, John RM, Kagami M, Nakai K, Soejima H, Ogata T, Arima T. Characterization of DNA methylation errors in patients with imprinting disorders conceived by assisted reproduction technologies. Hum Reprod , 2012, 27(8): 2541-2548. [122] Xu XR, Fu RG, Wang LY, Wang N, Zhang F, Le F, Li L, Li LJ, Liu XZ, Zheng YM, Lou HY, Jiang SW, Zhu XM, Zhu YM, Huang HF, Jin F. Epigenetic inheritance of paternally expressed imprinted genes in the testes of ICSI mice. Curr Pharm Des , 2014, 20(11): 1764-1771. (责任编委: 孙玉洁) |
[1] | 姜义圣,许执恒. 脑发育疾病及发病机制[J]. 遗传, 2019, 41(9): 801-815. |
[2] | 李芳,黄青芸,刘斯佳,郭忠信,熊欣欣,桂林,束会娟,黄绍明,谭国鹤,刘媛媛. Bmal1对小鼠胚胎期皮层神经元放射状迁移和轴突投射的影响[J]. 遗传, 2019, 41(6): 524-533. |
[3] | 何超,沈文龙,李平,张彦,曾晶,殷作明,赵志虎. Alu元件在染色质三维结构层次上的生物信息学分析[J]. 遗传, 2019, 41(3): 254-261. |
[4] | 于好强,孙福艾,冯文奇,路风中,李晚忱,付凤玲. 转录因子BES1/BZR1调控植物生长发育及抗逆性[J]. 遗传, 2019, 41(3): 206-214. |
[5] | 孟玉,杨若林. 基于基因家族大小的比较研究脊椎动物的适应性进化[J]. 遗传, 2019, 41(2): 158-174. |
[6] | 杨鑫宇,贾振伟. 颗粒细胞EGF类因子信号通路在调控卵母细胞成熟和发育中的作用[J]. 遗传, 2019, 41(2): 137-145. |
[7] | 杨志, 姚俊, 曹新. FGF信号通路在内耳发育调控和毛细胞再生中的作用[J]. 遗传, 2018, 40(7): 515-524. |
[8] | 邓雯文,龙梅,杨盛智,邹立扣. β-内酰胺酶耐药基因blaOKP进化及其侧翼序列特征研究[J]. 遗传, 2018, 40(7): 585-592. |
[9] | 周瑞,王以鑫,龙科任,蒋岸岸,金龙. LncRNA调控骨骼肌发育的分子机制及其在家养动物中的研究进展[J]. 遗传, 2018, 40(4): 292-304. |
[10] | 朱亚男, 敖英, 李斌, 万阳, 汪晖. 足细胞发育异常及相关肾脏疾病研究进展[J]. 遗传, 2018, 40(2): 116-125. |
[11] | 冯平, 罗瑞健. 灵长类苦味受体基因研究进展[J]. 遗传, 2018, 40(2): 126-134. |
[12] | 黎伟, 秦俊, 汪晖, 陈廖斌. 表观遗传生物标志物在人类疾病早期诊治中的研究进展[J]. 遗传, 2018, 40(2): 104-115. |
[13] | 柯玉文,刘江. 动物早期胚胎发育中染色质结构的继承和重编程[J]. 遗传, 2018, 40(11): 977-987. |
[14] | 张玲, 何建波. GATA6在肝脏发育中的作用及调控机制[J]. 遗传, 2018, 40(1): 22-32. |
[15] | 许磊,陈文,司国阳,黄艺园,林毅,蔡永萍,高俊山. 陆地棉GST基因家族全基因组分析[J]. 遗传, 2017, 39(8): 737-752. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: