[1] Tsai KN, Chen GW. Influenza genome diversity and evolution. Microbes Infect, 2011, 13(5): 479-488.[2] Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting influenza epidemics using search engine query data. Nature, 2008, 457(7232): 1012-1014.[3] Neumann G, Noda T, Kawaoka Y. Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature, 2009, 459(7249): 931-939.[4] Nelson MI, Holmes EC. The evolution of epidemic influenza. Nat Rev Genet, 2007, 8(3): 196-205.[5] Smith GJD, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, Ma SK, Cheung CL, Raghwani J, Bhatt S, Peiris JSM, Guan Y, Rambaut A. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature, 2009, 459(7250): 1122-1125.[6] Zhang J, Xu WF. Recent advances in anti-influenza agents with neuraminidase as target. Mini Rev Med Chem, 2006, 6(4): 429-448.[7] De Clercq E. Antiviral agents active against influenza A viruses. Nat Rev Drug Discov, 2006, 5(12): 1015-1025.[8] Lagoja IM, De Clercq E. Anti-influenza virus agents: Synthesis and mode of action. Med Res Rev, 2008, 28(1): 1-38.[9] Sugrue RJ, Tan BH, Yeo DS, Sutejo R. Antiviral drugs for the control of pandemic influenza virus. Ann Acad Med, 2008, 37(6): 518-524.[10] Moss RB, Davey RT, Steigbigel RT, Fang F. Targeting pandemic influenza: a primer on influenza antivirals and drug resistance. J Antimicrob Chemoth, 2010, 65(6): 1086-1093.[11] Fuyuno I. Tamiflu side effects come under scrutiny. Nature, 2007, 446(7134): 358-359.[12] Bridges CB, Harper SA, Fukuda K Uyeki TM, Cox NJ, Singleton JA, Advisory Committee on Immunization Practices. Prevention and control of influenza recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep, 2008, 57(RR-8): 1-34.[13] Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Bio, 2009, 10(2): 126-139.[14] Czech B, Hannon GJ. Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet, 2010, 12(1): 19-31.[15] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5): 843-854.[16] Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 1993, 75 (5): 855-862.[17] Liu QH, Paroo Z. Biochemical principles of small RNA pathways. Annu Rev Biochem, 2010, 79(1): 295-319.[18] Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet, 2009, 10(2): 94-108.[19] Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol, 2007, 23(1): 175-205.[20] Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell, 2009, 136(4): 642-655.[21] Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, Saïb A, Voinnet O. A cellular microRNA mediates antiviral defense in human cells. Science, 2005, 308(5721): 557-600.[22] Li WX, Li HW, Lu R, Li F, Dus M, Atkinson P, Brydon EWA, Johnson KL, García-Sastre A, Ball LA, Palese P, Ding SW. Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc Natl Acad Sci USA, 2004, 101(5): 1350-1355.[23] Carthew RW. Gene silencing by double-stranded RNA. Curr Opin Cell Biol, 2001, 13(2): 244-248.[24] Ryther RCC, Flynt AS, Phillips JA III, Patton JG. siRNA therapeutics: big potential from small RNAs. Gene Ther, 2005, 12(1): 5-11.[25] Ma Y, Chan CY, He ML. RNA interference and antiviral therapy. World J Gastroentero, 2007, 13(39): 5169-5179.[26] Zamore PD, Tusch |