[1] Tsai KN, Chen GW. Influenza genome diversity and evolution. Microbes Infect, 2011, 13(5): 479-488.[2] Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting influenza epidemics using search engine query data. Nature, 2008, 457(7232): 1012-1014.[3] Neumann G, Noda T, Kawaoka Y. Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature, 2009, 459(7249): 931-939.[4] Nelson MI, Holmes EC. The evolution of epidemic influenza. Nat Rev Genet, 2007, 8(3): 196-205.[5] Smith GJD, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, Ma SK, Cheung CL, Raghwani J, Bhatt S, Peiris JSM, Guan Y, Rambaut A. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature, 2009, 459(7250): 1122-1125.[6] Zhang J, Xu WF. Recent advances in anti-influenza agents with neuraminidase as target. Mini Rev Med Chem, 2006, 6(4): 429-448.[7] De Clercq E. Antiviral agents active against influenza A viruses. Nat Rev Drug Discov, 2006, 5(12): 1015-1025.[8] Lagoja IM, De Clercq E. Anti-influenza virus agents: Synthesis and mode of action. Med Res Rev, 2008, 28(1): 1-38.[9] Sugrue RJ, Tan BH, Yeo DS, Sutejo R. Antiviral drugs for the control of pandemic influenza virus. Ann Acad Med, 2008, 37(6): 518-524.[10] Moss RB, Davey RT, Steigbigel RT, Fang F. Targeting pandemic influenza: a primer on influenza antivirals and drug resistance. J Antimicrob Chemoth, 2010, 65(6): 1086-1093.[11] Fuyuno I. Tamiflu side effects come under scrutiny. Nature, 2007, 446(7134): 358-359.[12] Bridges CB, Harper SA, Fukuda K Uyeki TM, Cox NJ, Singleton JA, Advisory Committee on Immunization Practices. Prevention and control of influenza recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep, 2008, 57(RR-8): 1-34.[13] Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Bio, 2009, 10(2): 126-139.[14] Czech B, Hannon GJ. Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet, 2010, 12(1): 19-31.[15] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5): 843-854.[16] Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 1993, 75 (5): 855-862.[17] Liu QH, Paroo Z. Biochemical principles of small RNA pathways. Annu Rev Biochem, 2010, 79(1): 295-319.[18] Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet, 2009, 10(2): 94-108.[19] Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol, 2007, 23(1): 175-205.[20] Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell, 2009, 136(4): 642-655.[21] Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, Saïb A, Voinnet O. A cellular microRNA mediates antiviral defense in human cells. Science, 2005, 308(5721): 557-600.[22] Li WX, Li HW, Lu R, Li F, Dus M, Atkinson P, Brydon EWA, Johnson KL, García-Sastre A, Ball LA, Palese P, Ding SW. Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc Natl Acad Sci USA, 2004, 101(5): 1350-1355.[23] Carthew RW. Gene silencing by double-stranded RNA. Curr Opin Cell Biol, 2001, 13(2): 244-248.[24] Ryther RCC, Flynt AS, Phillips JA III, Patton JG. siRNA therapeutics: big potential from small RNAs. Gene Ther, 2005, 12(1): 5-11.[25] Ma Y, Chan CY, He ML. RNA interference and antiviral therapy. World J Gastroentero, 2007, 13(39): 5169-5179.[26] Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: Double- stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 2000, 101(1): 25-33.[27] Umbach JL, Cullen BR. The role of RNAi and microRNAs in animal virus replication and antiviral immunity. Gene Dev, 2009, 23(10): 1151-1164.[28] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281-297.[29] Bitko V, Barik S. Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild type negative-strand RNA viruses. BMC Microbiol, 2001, 1(1): 34-44.[30] Vaishnaw AK, Gollob J, Gamba-Vitalo C, Hutabarat R, Sah D, Meyers R, de Fougerolles T, Maraganore J. A status report on RNAi therapeutics. Silence, 2010, 1(1): 14-27.[31] Cheung TKW, Poon LLM. Biology of influenza A virus. Ann Ny Acad Sci, 2007, 1102(1): 1-25.[32] Ge Q, Filip L, Bai AL, Nguyen T, Eisen HN, Chen JZ. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc Natl Acad Sci USA, 2004, 101(23): 8676-8681.[33] Ge Q, Eisen HN, Chen JZ. Use of siRNAs to prevent and treat influenza virus infection. Virus Res, 2004, 102(1): 37-42.[34] Ge Q, McManus MT, Nguyen T, Shen CH, Sharp PA, Eisen HN, Chen JZ. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc Natl Acad Sci USA, 2003, 100(5): 2718-2723.[35] Tompkins SM, Lo CY, Tumpey TM, Epstein SL. Protection against lethal influenza virus challenge by RNA interference in vivo. Proc Natl Acad Sci USA, 2004, 101(23): 8682-8686.[36] Zhou HB, Jin ML, Yu ZJ, Xu XJ, Peng YP, Wu HY, Liu JL, Liu H, Cao SB, Chen HC. Effective small interfering RNAs targeting matrix and nucleocapsid protein gene inhibit influenza A virus replication in cells and mice. Antivir Res, 2007, 76(2): 186-193.[37] Zhang W, Wang CY, Yang ST, Qin C, Hu JL, Xia XZ. Inhibition of highly pathogenic avian influenza virus H5N1 replication by the small interfering RNA targeting polymerase A gene. Biochem Bioph Res Co, 2009, 390(3): 421-426.[38] Wu ZQ, Yang YW, Yang F, Yang J, Hu YF, Zhao LN, Wang JW, Jin Q. Effective siRNAs inhibit the replication of novel influenza A (H1N1) virus. Antivir Res, 2010, 85(3): 559-561.[39] Abrahamyan A, Nagy É, Golovan SP. Human H1 promoter expressed short hairpin RNAs (shRNAs) suppress avian influenza virus replication in chicken CH-SAH and canine MDCK cells. Antivir Res, 2009, 84(2): 159-167.[40] Sui HY, Zhao GY, Huang JD, Jin DY, Yuen KY, Zheng BJ. Small interfering RNA targeting M2 gene induces effective and long term inhibition of influenza A virus replication. PLoS ONE, 2009, 4(5): e5671.[41] Budhu A, Ji J, Wang XW. The clinical potential of microRNAs. J Hematol Oncol, 2010, 3: 37.[42] Schickel R, Boyerinas B, Park SM, Peter ME. MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene, 2008, 27(45): 5959-5974.[43] Huang JL, Wang FX, Argyris E, Chen KY, Liang ZH, Tian H, Huang WL, Squires K, Verlinghieri G, Zhang H. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med, 2007, 13(10): 1241-1247.[44] Scaria V, Hariharan M, Maiti S, Pillai B, Brahmachari SK. Host-virus interaction: a new role for microRNAs. Retrovirology, 2006, 3(10): 68-76.[45] Li Y, Chan EY, Li JN, Ni C, Peng XX, Rosenzweig E, Tumpey TM, Katze MG. MicroRNA expression and virulence in pandemic influenza virus-infected mice. J Virol, 2010, 84(6): 3023-3032.[46] Song LP, Liu H, Gao SJ, Jiang W, Huang WL. Cellular microRNAs inhibit replication of the H1N1 influenza A virus in infected cells. J Virol, 2010, 84(17): 8849-8860.[47] 刘鹤, 宋丽萍, 黄文林. miR26a和miR939调控 H1N1型流感病毒在MDCK细胞中的复制. 微生物学报, 2010, 50(10): 1399-1405.[48] Brahmachari SK, Hariharan M, Scaria V, Pillai B. Targets for human micro RNAs in avian influenza virus (H5N1) genome: US 2010/0016414 A1, 2009.[49] Perez JT, Varble A, Sachidanandam R, Zlatev I, Manoharan M, García-Sastre A, tenOever BR. Influenza A virus-generated small RNAs regulate the switch from transcription to replication. Proc Natl Acad Sci USA, 2010, 107(25): 11525-11530.[50] Umbach JL, Yen HL, Poon LLM, Cullen BR. Influenza A virus expresses high levels of an unusual class of small viral leader RNAs in infected cells. mBio, 2010, 1(4): e00204-e00210.[51] Hirsch AJ. The use of RNAi-based screens to identify host proteins involved in viral replication. Future Microbiol, 2010, 5(2): 303-311.[52] Hao LH, Sakurai A, Watanabe T, Sorensen E, Nidom CA, Newton MA, Ahlquist P, Kawaoka Y. Drosophila RNAi screen identifies host genes important for influenza virus replication. Nature, 2008, 454(7206): 890-893.[53] Karlas A, Machuy N, Shin YJ, Pleissner KP, Artarini A, Heuer D, Becker D, Khalil H, Ogilvie LA, Hess S, Mäurer AP, Müller E, Wolff T, Rudel T, Meyer TF. Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature, 2010, 463(7282): 818-822.[54] König R, Stertz S, Zhou YY, Inoue A, Hoffmann HH, Bhattacharyya S, Alamares JG, Tscherne DM, Ortigoza MB, Liang YH, Gao QS, Andrews SE, Bandyopadhyay S, De Jesus P, Tu BP, Pache L, Shih C, Orth A, Bonamy G, Miraglia L, Ideker T, García-Sastre A, Young JAT, Palese P, Shaw ML, Chanda SK. Human host factors required for influenza virus replication. Nature, 2010, 463(7282): 813-817.[55] Harborth J, Elbashir SM, Bechert K, Tuschl T, Weber K. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci, 2001, 114(24): 4557-4566.[56] Musiyenko A, Bitko V, Barik S. RNAi-dependent and -independent antiviral phenotypes of chromosomally integrated shRNA clones: role of VASP in respiratory syncytial virus growth. J Mol Med, 2007, 85(7): 745-752.[57] Harpen M, Barik T, Musiyenko A, Barik S. Mutational analysis reveals a noncontractile but interactive role of actin and profilin in viral RNA-dependent RNA synthesis. J Virol, 2009, 83(21): 10869-10876.[58] Judge AD, Sood V, Shaw JR, Fang DN, McClintock K, MacLachlan I. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol, 2005, 23(4): 457-462.[59] Paroo Z, Corey DR. Challenges for RNAi in vivo. Trends Biotechnol, 2004, 22(8): 390-394.[60] Perrimon N, Ni JQ, Perkins L. In vivo RNAi: today and tomorrow. Cold Spring Harb Perspect Biol, 2010, 2(8): a003640.[61] Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol, 2003, 21(6): 635-637.[62] Xiang SL, Fruehauf J, Li CJ. Short hairpin RNA-expressing bacteria elicit RNA interference in mammals. Nat Biotechnol, 2006, 24(6): 697-702.[63] MacDiarmid JA, Amaro-Mugridge NB, Madrid-Weiss J, Sedliarou I, Wetzel S, Kochar K, Brahmbhatt VN, Phillips L, Pattison ST, Petti C, Stillman B, Graham RM, Brahmbhatt H. Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug. Nat Biotechnol, 2009, 27(7): 643-651.[64] Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov, 2009, 8(2): 129-138. |