遗传 ›› 2012, Vol. 34 ›› Issue (5): 560-572.doi: 10.3724/SP.J.1005.2012.00560
胡帅1,2, 王芳展1,2, 刘振宁1,2, 刘亚培1,2, 余小林1,2
收稿日期:
2011-10-09
修回日期:
2011-02-12
出版日期:
2012-05-20
发布日期:
2012-05-25
通讯作者:
余小林
E-mail:xlyu@zju.edu.cn
基金资助:
浙江省自然科学基金项目(编号: Y3090294)和浙江省人事厅归国留学人员启动基金(编号: J20090028)资助
HU Shuai1,2, WANG Fang-Zhan1,2, LIU Zhen-Ning1,2, LIU Ya-Pei1,2, YU Xiao-Lin1,2
Received:
2011-10-09
Revised:
2011-02-12
Online:
2012-05-20
Published:
2012-05-25
Contact:
Yu Xiaolin
E-mail:xlyu@zju.edu.cn
摘要: 脱落酸(ABA)在各个植物生长发育阶段以及植物对生物与非生物胁迫的响应过程中都发挥着重要的作用。最近研究表明, 在ABA信号转导途径中有3种核心组份:ABA受体PYR/PYL/RCAR蛋白、负调控因子2C类蛋白磷酸酶(PP2C)和正调控因子SNF1相关的蛋白激酶2(SnRK2), 它们共同组成了一个双重负调控系统—— PYR/PYL/RCAR—| PP2C—| SnRK2来调控ABA信号转导及其下游反应, 且3种核心组份在植物体内的结合方式受时空和生化等因素的影响, 通过特定组合形成的ABA信号转导复合体介导特定的ABA信号反应。文章就PYR/PYL/RCAR蛋白介导的植物ABA信号识别与转导途径的分子基础及其调控机制, 以及PYR/PYL/RCAR—PP2C—SnRK2参与的ABA信号调控网络等研究进展做一概述, 并对该领域今后的研究进行了展望。
胡帅,王芳展,刘振宁,刘亚培,余小林. PYR/PYL/RCAR蛋白介导植物ABA的信号转导[J]. 遗传, 2012, 34(5): 560-572.
HU Shuai, WANG Fang-Zhan, LIU Zhen-Ning, LIU Ya-Pei, YU Xiao-Lin. ABA signaling mediated by PYR/PYL/RCAR in plants[J]. HEREDITAS, 2012, 34(5): 560-572.
[1] Adie BAT, Pérez-Pérez J, Pérez-Pérez MM, Godoy M, Sánchez-Serrano JJ, Schmelz EA, Solano R. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell, 2007, 19(5): 1665-1681.[2] Ding ZH, Li SM, An XL, Liu X, Qin HJ, Wang DW. Transgenic expression of MYB15 confers en-hanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. J Genet Genom-ics, 2009, 36(1): 17-29.[3] 张大鹏. 始于质体/叶绿体的ABA信号通路. 植物学报, 2011, 46(4): 361-369.[4] Liu XG, Yue YL, Li B, Nie YL, Li W, Wu WH, Ma LG. A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science, 2007, 315 (5819): 1712-1716.[5] Shen YY, Wang XF, Wu FQ, Du SY, Cao ZC, Shang Y, Wang XL, Peng CC, Yu XC, Zhu SY, Fan RC, Xu YH, Zhang DP. The Mg-chelatase H subunit is an abscisic acid receptor. Nature, 2006, 443(7113): 823-826.[6] Johnston CA, Temple BR, Chen JG, Gao YJ, Moriyama EN, Jones AM, Siderovski DP, Willard FS. Comment on “A G protein-coupled receptor is a plasma membrane re-ceptor for the plant hormone abscisic acid”. Science, 2007, 318(5852): 914.[7] Guo JJ, Yang XH, Weston DJ, Chen JG. Abscisic acid re-ceptors: past, present and future. J Integr Plant Biol, 2011, 53(6): 469-479.[8] Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christ-mann A, Grill E. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science, 2009, 324(5930): 1064-1068.[9] Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 2009, 324(5930): 1068-1071.[10] Szostkiewicz I, Richter K, Kepka M, Demmel S, Ma Y, Korte A, Assaad FF, Christmann A, Grill E. Closely related receptor complexes differ in their ABA selectivity and sensitivity. Plant J, 2010, 61(1): 25-35.[11] Nishimura N, Hitomi K, Arvai AS, Rambo RP, Hitomi C, Cutler SR, Schroeder JI, Getzoff ED. Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science, 2009, 326(5958): 1373-1379.[12] Saavedra X, Modrego A, Rodriguez D, González-García MP, Sanz L, Nicolás G, Lorenzo O. The nuclear interactor PYL8/RCAR3 of Fagus sylvatica FsPP2C1 is a positive regulator of abscisic acid signaling in seeds and stress. Plant Physiol, 2010, 152(1): 133-150.[13] Leung J, Bouvier-Durand M, Morris PC, Guerrier D, Chefdor F, Giraudat J. Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phos-phatase. Science, 1994, 264(5164): 1448-1452.[14] Leung J, Merlot S, Giraudat J. The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phos-phatases 2C involved in abscisic acid signal transduction. Plant Cell, 1997, 9(5): 759-771.[15] Gosti F, Beaudoin N, Serizet C, Webb AA, Vartanian N, Giraudat J. ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell, 1999, 11(10): 1897-1909.[16] Merlot S, Gosti F, Guerrier D, Vavassellr A, Giraudat J. The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signaling pathway. Plant J, 2001, 25(3): 295-303.[17] Saez A, Apostolova N, Gonzalez-Guzman M, Gonzalez- Garcia MP, Nicolas C, Lorenzo O, Rodriguez PL. Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regu-lator of abscisic acid signalling. Plant J, 2004, 37(3): 354-369.[18] Yoshida T, Nishimura N, Kitahata N, Kuromori T, Ito T, Asami T, Shinozaki K, Hirayama T. ABA-Hypersensitive Germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs. Plant Physiol, 2006, 140(1): 115-126.[19] Nishimura N, Yoshida T, Kitahata N, Asami T, Shinozaki K, Hirayama T. ABA-Hypersensitive Germination 1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. Plant J, 2007, 50(6): 935-949.[20] Hirayama T, Shinozaki K. Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci, 2007, 12(8): 343-351.[21] Santiago J, Dupeux F, Betz K, Antoni R, Gonzalez-Guzman M, Rodriguez L, Márquez JA, Rodriguez PL. Structural insights into PYR/PYL/RCAR ABA receptors and PP2Cs. Plant Sci, 2012, 182: 3-11.[22] Schweighofer A, Hirt H, Meskiene I. Plant PP2C phos-phatases: emerging functions in stress signaling. Trends Plant Sci, 2004, 9(5): 236-243.[23] Komatsu K, Nishikawa Y, Ohtsuka T, Taji T, Quatrano RS, Tanaka S, Sakata Y. Functional analyses of the ABI1- re-lated protein phosphatase type 2C reveal evolutionarily conserved regulation of abscisic acid signaling between Arabidopsis and the moss Physcomitrella pat-ens. Plant Mol Biol, 2009, 70(3): 327-340.[24] Tougane K, Komatsu K, Bhyan S B, Sakata Y, Ishizaki K, Yamato K T, Kohchi T, Takezawa D. Evolutionarily con-served regulatory mechanisms of abscisic acid signaling in land plants: characterization of ABSCISIC ACID INSENSITIVE1-like type 2C protein phosphatase in the liverwort Marchantia polymorpha. Plant Physiol, 2010, 152(3): 1529-1543.[25] Anderberg RJ, Walker-Simmons MK. Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. Proc Natl Acad Sci USA, 1992, 89(21): 10183-10187.[26] Li JX, Wang XQ, Watson MB, Assmann SM. Regulation of abscisic acid-induced stomatal closure and anion chan-nels by guard cell AAPK kinase. Science, 2000, 287(5451): 300-303.[27] Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, Aronso J, Ecker JR., Shinozaki K. ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol, 2002, 43(12): 1473-1483.[28] Hrabak EM, Chan CWM, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu JK, Harmon AC. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol, 2003, 132(2): 666-680.[29] Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T. Differential activation of the rice sucrose nonfermenting 1-related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell, 2004, 16(5): 1163-1177.[30] Mizoguchi M., Umezawa T, Nakashima K, Kidokoro S, Takasaki H, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K. Two closely related subclass II SnRK2 protein kinases cooperatively regulate drought-inducible gene expression. Plant Cell Physiol, 2010, 51(5): 842-847.[31] Monks DE, Aghoram K, Courtney PD, DeWald D B, Dewey RE. Hyperosmotic stress induces the rapid phos-phorylation of a soybean phosphatidylinositol transfer protein homolog through activation of the protein kinases SPK1 and SPK2. Plant Cell, 2001, 13(5): 1205-1219.[32] Umezawa T, Yoshida R, Maruyama K, Yamagu-chi-Shino-zaki K, Shinozaki K. SRK2C, a SNF1-related pro-tein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2004, 101(49): 17306-17311.[33] Boudsocq M, Barbier-Brygoo H, Laurière C. Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem, 2004, 279(40): 41758-41766.[34] Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Taka-hashi F, Shinozaki K. The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem, 2006, 281(8): 5310-5318.[35] Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell, 2002, 14(12): 3089-3099.[36] Fujii H, Verslues P E, Zhu J K. Identification of two pro-tein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell, 2007, 19(2): 485-494.[37] Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K, Kobayashi M, Nakasone S, Yamada K, Ito T, Shinozaki K, Yamaguchi-Shinozaki K. Three SnRK2 pro-tein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol, 2009, 50(12): 2123-2132.[38] Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Ko-bayashi M, Shinozaki K, Yamaguchi-Shinozaki K. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol, 2009, 50(7): 1345-1363.[39] Raghavendra AS, Gonugunta VK, Christmann A, Grill E. ABA perception and signalling. Trends Plant Sci, 2010, 15(7): 395-401.[40] Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol, 2010, 61: 651-679.[41] Umezawa T , Sugiyama N, Mizoguchi M, Hayashi S, My-ouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci USA, 2009, 106(41): 17588-17593.[42] Vlad F, Rubio S, Rodrigues A, Sirichandra C, Belin C, Robert N, Leung J, Rodriguez PL, Laurière C, Merlot S. Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell, 2009, 21(10): 3170-3184.[43] Santiago J, Dupeux F, Round A, Antoni R, Park SY, Jamin M, Cutler SR, Rodriguez PL, Márquez JA. The abscisic acid receptor PYR1 in complex with abscisic acid. Nature, 2009, 462(7273): 665-668.[44] Melcher K, Ng LM, Zhou XE, Soon FF, Xu Y, Suino-Powell KM, Park SY, Weiner JJ, Fujii H, Chinnusamy V, Kovach A, Li J, Wang Y, Li J, Peterson FC, Jensen DR, Yong EL, Volkman BF, Cutler SR, Zhu JK, Xu HE. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. Nature, 2009, 462(7273): 602-608.[45] Yin P, Fan H, Hao Q, Yuan XQ, Wu D, Pang YX, Yan CY, Li WQ, Wang JW, Yan NE. Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat Struct Mol Biol, 2009, 16(12): 1230-1236.[46] Hao Q, Yin P, Li WQ, Wang L, Yan CY, Lin ZH, Wu JZ, Wang JW, Yan SF, Yan NE. The molecular basis of ABA-independent inhibition of PP2Cs by a subclass of PYL proteins. Mol Cell, 2011, 42(5): 662-672.[47] Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Du-peux F, Park SY, Márquez JA, Cutler SR, Rodriguez PL. Modulation of drought resistance by the abscisic acid re-ceptor PYL5 through inhibition of clade A PP2Cs. Plant J, 2009, 60(4): 575-578.[48] Miyazono KI, Miyakawa T, Sawano Y, Kubota K, Kang HJ, Asano A, Miyauchi Y, Takahashi M, Zhi YH, Fujita Y, Yoshida T, Kodaira KS, Yamaguchi-Shinozaki K, Tanokura M. Structural basis of abscisic acid signalling. Nature, 2009, 462(7273): 609-614.[49] Nishimura N, Sarkeshik A, Nito K, Park SY, Wang A, Carvalho PC, Lee S, Caddell DF, Cutler SR, Chory J, Yates JR, Schroeder JI. PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J, 2010, 61(2): 290-299.[50] Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K. Mo-lecular basis of the core regulatory network in ABA re-sponses: sensing, signaling and transport. Plant Cell Physiol, 2010, 51(11): 1821-1839.[51] Zhang WX, Ruan JH, Ho THD, You Y, Yu T, Quatrano RS. Cis-regulatory element based targeted gene finding: genome- wide identification of abscisic acid-and abiotic stress- responsive genes in Arabidopsis thaliana. Bio-informatics, 2005, 21(14): 3074-3081.[52] Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA, 2000, 97(21): 11632-11637.[53] Finkelstein RR, Lynch TJ. The Arabidopsis ab-scisic acid response gene ABI5 encodes a basic leu-cine zipper transcription factor. Plant Cell, 2000, 12(4): 599-610.[54] Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J, 2010, 61(4): 672-685.[55] 孙晓丽, 李勇, 才华, 柏锡, 纪巍, 季佐军, 朱延明. 拟南芥bZIP1转录因子通过与ABRE元件结合调节ABA信号传导. 作物学报, 2011, 37(4): 612-619.[56] Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci USA, 2006, 103(6): 1988-1993.[57] Fujii H, Zhu JK. Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc Natl Acad Sci USA, 2009, 106(20): 8380-8385.[58] Johnson R R, Wagner RL, Verhey SD, Walker-Simmons MK. The abscisic acid-responsive kinase PKABA1 inter-acts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiol, 2002, 130(2): 837-846.[59] Kagaya Y, Hobo T, Murata M, Ban A, Hattori T. Abscisic acid-induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor, TRAB1. Plant Cell, 2002, 14(12): 3177-3189.[60] 刘婧, 王宝山, 谢先芝. 植物气孔发育及其调控研究. 遗传, 2011, 33(2): 131-137.[61] Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Matschi S, Liese A, Al-Rasheid KAS, Romeis T, Hedrich R. Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc Natl Acad Sci USA, 2009, 106(50): 21425-21430.[62] Lee SC, Lan WZ, Buchanan BB, Luan S. A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc Natl Acad Sci USA, 2009, 106(50): 21419-21424.[63] Sato A, Sato Y, Fukao Y, Fujiwara M, Umezawa T, Shino-zaki K, Hibi T, Taniguchi M, Miyake H, Goto DB, Uozumi N. Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem J, 2009, 424(3): 439-448.[64] Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI. Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev, 2010, 24(16): 1695-1708.[65] Geiger D, Scherzer S, Mumm P, Marten I, Ache P, Matschi S, Liese A, Wellmann C, Al-Rasheid K, Grill E. Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc Natl Acad Sci USA, 2010, 107(17): 8023-8028. |
[1] | 于好强,孙福艾,冯文奇,路风中,李晚忱,付凤玲. 转录因子BES1/BZR1调控植物生长发育及抗逆性[J]. 遗传, 2019, 41(3): 206-214. |
[2] | 李慧卿, 陈超, 陈冉冉, 宋雪薇, 李佶娜, 朱延明, 丁晓东. 利用CRISPR/Cas9双基因敲除系统初步解析大豆GmSnRK1.1和GmSnRK1.2对ABA及碱胁迫的响应[J]. 遗传, 2018, 40(6): 496-507. |
[3] | 刘小民, 袁明龙. 昆虫天然免疫相关基因研究进展[J]. 遗传, 2018, 40(6): 451-466. |
[4] | 陈青云,李有志,樊宪伟. 植物气孔发育的分子调控机制[J]. 遗传, 2017, 39(4): 302-312. |
[5] | 帅海威, 孟永杰, 罗晓峰, 陈锋, 戚颖, 杨文钰, 舒凯. 生长素调控种子的休眠与萌发[J]. 遗传, 2016, 38(4): 314-322. |
[6] | 郑仲仲 沈金秋 潘伟槐 潘建伟. 植物钙感受器及其介导的逆境信号途径[J]. 遗传, 2013, 35(7): 875-884. |
[7] | 魏开发,陈娟,陈艳峰,吴凌娟,贾文锁. 内源ABA信号水平动态调控的分子机制[J]. 遗传, 2012, 34(3): 296-306. |
[8] | 戴鹏,刘欣,李庆伟. Lck和Fyn对T细胞发育过程的影响[J]. 遗传, 2012, 34(3): 289-295. |
[9] | 程曦,田彩娟,李爱宁,邱金龙. 植物与病原微生物互作分子基础的研究进展[J]. 遗传, 2012, 34(2): 134-144. |
[10] | 刘振华,于延冲,向凤宁. 生长素响应因子与植物的生长发育[J]. 遗传, 2011, 33(12): 1335-1346. |
[11] | 马仙珏,薛雷. 双亮氨酸拉链激酶DLK对JNK信号通路的调控作用及机制[J]. 遗传, 2010, 32(8): 785-790. |
[12] | 黄剑,沈海龙,刘长莉,李玉花. 植物不定芽离体再生分子调控的评述[J]. 遗传, 2007, 29(5): 528-528―536. |
[13] | 王荣,崔百明,彭明,张根发. 赤霉素信号转导与棉纤维的分子发育[J]. 遗传, 2007, 29(3): 276-276―282. |
[14] | 吴易阳 李岭. MicroRNA与肿瘤相关的信号转导通路[J]. 遗传, 2007, 29(12): 1419-1428. |
[15] | 蓝兴国,于晓敏,李玉花. 配子体自交不亲和信号转导的研究进展[J]. 遗传, 2005, 27(4): 677-685. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: