[1] Li G, Reinberg D. Chromatin higher-order structures and gene regulation. Curr Opin Genet Dev, 2011, 21(2): 175-186.[2] Stral BD, Allis CD. The language of covalent histone modifications. Nature, 2000, 403(6765): 41-45.[3] Thomas J, Allis CD. Translating the histone code. Science, 2001, 293(5532):1074- 1080.[4] Thorne AW, Sautiere P, Briand G, Crane-Robinson C. The structure of ubiquitinated histone H2B. EMBO J, 1987, 6(4): 1005-1010.[5] Shimada M, Nakadai T, Fukuda A, Hisatake K. cAMP-response element-binding (CREB) controls MSK1-mediated phosphorylation of histone H3 at the c-fos pro-moter in vitro. J Biol Chem, 2010, 285(13): 9390-9401.[6] Yun M, Wu J, Jerry LW, Li B. Readers of histone modifications. Cell Res, 2011, 21 (4): 564-578.[7] Shen X. Chromatin and Epigenetic Regulation. Beijing: Higher Education Press, 2006: 104.[8] Mellor J. It Takes a PHD to Read the Histone Code. Cell, 2006, 126(1): 22-24.[9] David PF, Matthew JS. HDACs and their inhibitors in immunology: teaching anticancer drugs new tricks. Immunol Cell Biol, 2012, 90(1): 3-5.[10] Gupta S, Kim SY, Artis S, Molfese DL, Schumacher A, Sweatt JD, Paylor RE, Lubin FD. Histone methylation regulates memory formation. J Neurosci, 2010, 30(10): 3589-3599.[11] Nilanjana C, Divya S, Mekonnen LD, Song T, Michael AS, Blaine B. Histone H3 tail acetylation modulates ATP-dependent remodeling through multiple mechanisms. Nucleic Acids Res. 2011, 39(19): 8378-8391.[12] Wu J, Michael SY, Lu L, Ye L, Dou Y, Mats L, Chen J, Yu X. Histone ubiquitination associates with BRCA1-dependent DNA damage response. Mol Cell Biol, 2009, 29(3): 849- 860.[13] Priscilla N, Peter C. Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates tran-scription and antagonizes polycomb silencing. Proc Natl Acad Sci USA, 2011, 108(7): 2801-2806.[14] Banerjee T, Chakravarti D. A peek into the complex realm of histone phosphorylation. Mol Cell Biol, 2011, 31(24): 4858-4873.[15] Hasan S, Hottiger MO. Histone acetyl transferases: a role in DNA repair and DNA replication. J Mol Med, 2002, 80(8): 463-474.[16] Gao L, Cueto MA, Asselbergs F, Atadja P. Cloning and functional characterization of HDAC 11, a novel member of the human histone deacetylase family. J Biol Chem, 2002, 277(28): 25748-25755.[17] Grozinger M, Schreiber SL. Deacetylase enzyme: biological functions and the use of small- molecule inhibitors. Chem Biol, 2002, 9(1): 3-16.[18] Shi YJ, Lan F, Matson C, Mulligan P, Whetstine JR, Cole RA, Shi Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 2004, 119(7): 941-953.[19] Tsukada Y, Fang J, Hediye EB, Maria EW, Christoph HB, Paul T, Zhang Y. Histone demethylation by a family of JmjC domain-containing proteins. Nature, 2006, 439(7078): 811 -816.[20] Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem, 2001, 70: 503- 533.[21] Chung C, Sung H. Deubiquitinating enzymes: Their diversity and emerging roles. Biochem Biophys Res Com-mun, 1999, 266(3): 633-640.[22] Wang F, Dai J, John RD, Ewa N, Budhaditya B, Todd S, Gary JG, Jonathan MG. Histone H3 Thr -3 phosphorylation by Haspin positions Aurora B at centromeres in mitosis. Science, 2010, 330(6001): 231-235.[23] Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM. Structure and ligand of a histone acetyltrans-ferase bromodomain. Nature, 1999, 399(6735): 491-496.[24] Bedford MT. Using protein domain microarrays to read the histone code. J Biomol Tech, 2011, 22(Supplement): S6-S7.[25] Hoppmann V, Thorstensen T, Kristiansen PE, Veiseth SV, Rahman MA, Finne K, Aalen RB, Aasland R. The CW domain, a new histone recognition module in chromatin proteins |