[1] Li G, Reinberg D. Chromatin higher-order structures and gene regulation. Curr Opin Genet Dev, 2011, 21(2): 175-186.[2] Stral BD, Allis CD. The language of covalent histone modifications. Nature, 2000, 403(6765): 41-45.[3] Thomas J, Allis CD. Translating the histone code. Science, 2001, 293(5532):1074- 1080.[4] Thorne AW, Sautiere P, Briand G, Crane-Robinson C. The structure of ubiquitinated histone H2B. EMBO J, 1987, 6(4): 1005-1010.[5] Shimada M, Nakadai T, Fukuda A, Hisatake K. cAMP-response element-binding (CREB) controls MSK1-mediated phosphorylation of histone H3 at the c-fos pro-moter in vitro. J Biol Chem, 2010, 285(13): 9390-9401.[6] Yun M, Wu J, Jerry LW, Li B. Readers of histone modifications. Cell Res, 2011, 21 (4): 564-578.[7] Shen X. Chromatin and Epigenetic Regulation. Beijing: Higher Education Press, 2006: 104.[8] Mellor J. It Takes a PHD to Read the Histone Code. Cell, 2006, 126(1): 22-24.[9] David PF, Matthew JS. HDACs and their inhibitors in immunology: teaching anticancer drugs new tricks. Immunol Cell Biol, 2012, 90(1): 3-5.[10] Gupta S, Kim SY, Artis S, Molfese DL, Schumacher A, Sweatt JD, Paylor RE, Lubin FD. Histone methylation regulates memory formation. J Neurosci, 2010, 30(10): 3589-3599.[11] Nilanjana C, Divya S, Mekonnen LD, Song T, Michael AS, Blaine B. Histone H3 tail acetylation modulates ATP-dependent remodeling through multiple mechanisms. Nucleic Acids Res. 2011, 39(19): 8378-8391.[12] Wu J, Michael SY, Lu L, Ye L, Dou Y, Mats L, Chen J, Yu X. Histone ubiquitination associates with BRCA1-dependent DNA damage response. Mol Cell Biol, 2009, 29(3): 849- 860.[13] Priscilla N, Peter C. Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates tran-scription and antagonizes polycomb silencing. Proc Natl Acad Sci USA, 2011, 108(7): 2801-2806.[14] Banerjee T, Chakravarti D. A peek into the complex realm of histone phosphorylation. Mol Cell Biol, 2011, 31(24): 4858-4873.[15] Hasan S, Hottiger MO. Histone acetyl transferases: a role in DNA repair and DNA replication. J Mol Med, 2002, 80(8): 463-474.[16] Gao L, Cueto MA, Asselbergs F, Atadja P. Cloning and functional characterization of HDAC 11, a novel member of the human histone deacetylase family. J Biol Chem, 2002, 277(28): 25748-25755.[17] Grozinger M, Schreiber SL. Deacetylase enzyme: biological functions and the use of small- molecule inhibitors. Chem Biol, 2002, 9(1): 3-16.[18] Shi YJ, Lan F, Matson C, Mulligan P, Whetstine JR, Cole RA, Shi Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 2004, 119(7): 941-953.[19] Tsukada Y, Fang J, Hediye EB, Maria EW, Christoph HB, Paul T, Zhang Y. Histone demethylation by a family of JmjC domain-containing proteins. Nature, 2006, 439(7078): 811 -816.[20] Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem, 2001, 70: 503- 533.[21] Chung C, Sung H. Deubiquitinating enzymes: Their diversity and emerging roles. Biochem Biophys Res Com-mun, 1999, 266(3): 633-640.[22] Wang F, Dai J, John RD, Ewa N, Budhaditya B, Todd S, Gary JG, Jonathan MG. Histone H3 Thr -3 phosphorylation by Haspin positions Aurora B at centromeres in mitosis. Science, 2010, 330(6001): 231-235.[23] Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM. Structure and ligand of a histone acetyltrans-ferase bromodomain. Nature, 1999, 399(6735): 491-496.[24] Bedford MT. Using protein domain microarrays to read the histone code. J Biomol Tech, 2011, 22(Supplement): S6-S7.[25] Hoppmann V, Thorstensen T, Kristiansen PE, Veiseth SV, Rahman MA, Finne K, Aalen RB, Aasland R. The CW domain, a new histone recognition module in chromatin proteins. EMBO J, 2011, 30(10): 1939-1952.[26] DeMicco A, Bassing CH. Deciphering the DNA damage histone code. Cell Cycle, 2010, 9(19): 3845-3846.[27] Ian Fingerman M, Du HN, Briggs SD. Controlling histone methylation via trans-histone pathways. Epigenetics, 2008, 3(5): 237-242.[28] Allis CD, Jenuwein T, Reinberg D, Caparros ML. Epigenetics. Cold Spring Harbor: Cold Spring Harbor Labora-tory Press, 2007: 39-40.[29] Winter S, Simboeck E, Fischle W, Zupkovitz G, Dohnal I, Mechtler K, Ammerer G, Seiser C. 14-3-3 proteins recog-nize a histone code at histone H3 and are required for transcriptional activation. EMBO J, 2008, 27(1): 88-89.[30] Marx J. Protein tail modification opens way for gene activity. Science, 2006, 311 (5762): 757.[31] Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL. Histone H4-K16 acetylation controls chro-matin structure and protein interactions. Science, 2006, 311 (5762): 844-847.[32] Jacobs SA, Khorasanizadeh S. Structure of HP1 chromodomain bound to a Lysine 9-methylated histone H3 tail. Science, 2002, 295(5562): 2080-2083.[33] Naughton C, Sproul D, Hamilton C, Gilbert N. Analysis of active and inactive X chromosome architecture reveals the independent organization of 30 nm and large-scale chro-matin structures. Mol Cell, 2010, 40(3): 397-409.[34] 万永杰, 张艳丽, 祝铁钢, 王锋. 体细胞核移植的不完全核重编程与克隆动物的发育异常. 畜牧与兽医 , 2008, 40(8): 98-101.[35] Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Martienssen RA. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science, 2002, 297 (5588): 1833-1837.[36] Sims RG, Reinberg D. Greenleaf AL. Histone H3 Lys4 methylation: caught in a bind? Genes Dev, 2006, 20(20): 2779-2786.[37] Corden JL. Seven ups the code. Science, 2007, 318(5857): 1735-1736.[38] Duong HA, Robles MS, Knutti D, Weitz CJ. A molecular mechanism for circadian clock negative feedback. Science, 2011, 332(6036): 1436-1439.[39] Ditacchio L, Le HD, Vollmers CV, Hatori M, Witcher M, Secombe J, Panda S. Histone lysine demethylase JARID1a CLOCK-BMAL1 and influences the circadian clock. Science, 2011, 333 (6051): 1881-1885.[40] Brown SA, Ripperger J, Kadener S, Fleury-Olela F, Vilbois F, Rosbash M, Schibler U. PERIOD1-associated proteins modulate the negative limb of the mammalian cir-cadian oscillator. Science, 2005, 308(5722): 693-696.[41] Brown SB. A new histone code for clocks? Science, 2011, 333(6051): 1833-1834.[42] Kelly AE, Ghenoiu C, Xue JZ, Zierhut C, Kimura H, Funabiki H. Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science, 2010, 330(6001): 235-239.[43] Fischle W, Wang Y, Allis CD. Histone and chromatin cross-talk. Curr Opin Cell Biol, 2003, 15(2): 172-183.[44] Misri S, Pandita S, Kumar R, Pandita TK. Telomeres, his-tone code and DNA damage respone. Cytogenet Ge-nome Res, 2008, 122(3-4): 297-307.[45] Corpet A, Almouzni G. A histone code for the DNA damage response in mammalian cells? EMBO J, 2009, 28(13): 1828-1830.[46] Xie A, Shobu O, Gurushankar C, Ralph S. H2AX post-translational modifications in the ionizing radiation response and homologous recombination. Cell Cycle, 2010, 9(17): 3602- 3610.[47] Huyen Y, Zqheib O, Ditullio RA, Gorgoulis VG, Zacharatos P, Petty TJ, Sheston EA, Mellert HS, Stavridi ES, Halazonetis TD. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double- strand breaks. Nature, 2004, 432(7015): 406-411.[48] Kim J, Daniel J, Espejo A, Lake A, Krishna M, Xia L, Zhang Y, Bedford MT. Tudor, MBT and chromo domains gauge the degree of lysine methylation. EMBO Rep, 2006, 7(4): 397-403.[49] Vermeulen M, Eberl HC, Matarese F, Marks H, Denissov S, Butter F, Lee KK, Olsen JV, Hyman AA, Stunnenberg HG, Mann M. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell, 2010, 142(6): 967-980. |