[1] Fu Y, Kawabe A, Etcheverry M, Ito T, Toyoda A, Fujiyama A, Colot V, Tarutani Y, Kakutani T. Mobilization of a plant transposon by expression of the transposon-encoded anti-silencing factor. EMBO J, 2013, 32(17): 2407-2417. <\p>
[2] Xie MC, Hong CB, Zhang B, Lowdon RF, Xing XY, Li DF, Zhou X, Lee HJ, Maire CL, Ligon KL, Gascard P, Sigaroudinia M, Tlsty TD, Kadlecek T, Weiss A, O'Geen H, Farnham PJ, Madden PAF, Mungall AJ, Tam A, Kamoh B, Cho S, Moore R, Hirst M, Marra MA, Costello JF, Wang T. DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape. Nat Genet, 2013, 45(7): 836-841. <\p>
[3] Macdonald WA. Epigenetic mechanisms of genomic imprinting: common themes in the regulation of imprinted regions in mammals, plants, and insects. Genet Res Int, 2012, 2012: 585024. <\p>
[4] Bala Tannan N, Brahmachary M, Garg P, Borel C, Alnefaie R, Watson CT, Thomas NS, Sharp AJ. DNA methylation profiling in X;autosome translocations supports a role for L1 repeats in the spread of X chromosome inactivation. Hum Mol Genet, 2014, 23(5): 1224-1236. <\p>
[5] Gehring M, Bubb KL, Henikoff S. Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science, 2009, 324(5933): 1447-1451. <\p>
[6] Zhang H, Zhu JK. Active DNA demethylation in plants and animals. Cold Spring Harb Symp Quant Biol, 2012, 77: 161-173. <\p>
[7] Zemach A, McDaniel IE, Silva P, Zilberman D. Genome- wide evolutionary analysis of eukaryotic DNA methylation. Science, 2010, 328(5980): 916-919. <\p>
[8] Finnegan EJ, Kovac KA. Plant DNA methyltransferases. Plant Mol Biol, 2000, 43(2-3): 189-201. <\p>
[9] Jin B, Robertson KD. DNA methyltransferases, DNA damage repair, and cancer. Adv Exp Med Biol, 2013, 754: 3-29. <\p>
[10] Finnegan EJ, Peacock WJ, Dennis ES. DNA methylation, a key regulator of plant development and other processes. Curr Opin Genet Dev, 2000, 10(2): 217-223. <\p>
[11] Cao XF, Jacobsen SE. Role of the arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol, 2002, 12(13): 1138-1144. <\p>
[12] Cao XF, Aufsatz W, Zilberman D, Mette MF, Huang MS, Matzke M, Jacobsen SE. Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation. Curr Biol, 2003, 13(24): 2212-2217. <\p>
[13] Rival A, Jaligot E, Beule T, Finnegan EJ. Isolation and expression analysis of genes encoding MET, CMT, and DRM methyltransferases in oil palm (Elaeis guineensis Jacq.) in relation to the 'mantled' somaclonal variation. J Exp Bot, 2008, 59(12): 3271-3281. <\p>
[14] Matzke M, Kanno T, Huettel B, Daxinger L, Matzke AJM. Targets of RNA-directed DNA methylation. Curr Opin Plant Biol, 2007, 10(5): 512-519. <\p>
[15] Deleris A, Stroud H, Bernatavichute Y, Johnson E, Klein G, Schubert D, Jacobsen SE. Loss of the DNA methyltransferase MET1 Induces H3K9 hypermethylation at PcG target genes and redistribution of H3K27 trimethylation to transposons in Arabidopsis thaliana. PLoS Genet, 2012, 8(11): e1003062. <\p>
[16] Henderson IR, Deleris A, Wong W, Zhong XH, Chin HG, Horwitz GA, Kelly KA, Pradhan S, Jacobsen SE. The de novo cytosine methyltransferase DRM2 requires intact UBA domains and a catalytically mutated paralog DRM3 during RNA-directed DNA methylation in Arabidopsis thaliana. PLoS Genet, 2010, 6(10): e1001182. <\p>
[17] Bartee L, Malagnac F, Bender J. Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. Genes Dev, 2001, 15(14): 1753-1758. <\p>
[18] Zhu JK. Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet, 2009, 43: 143-166. <\p>
[19] McCullough AK, Dodson ML, Lloyd RS. Initiation of base excision repair: glycosylase mechanisms and |