[1] Janeisch R, Mintz B. Simian virus 40 DNA sequences in DNA healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proc Natl Acad Sci USA, 1974, 71(4): 1250–1254.
[2] Brinster RL, Zimmermann JW. Spermatogenesis follow-ing male germ-cell transplantation. Proc Natl Acad Sci USA, 1994, 91(24): 11298–11302.
[3] Nagano M, Brinster CJ, Orwig KE, Ryu BY, Avarbock MR, Brinster RL. Transgenic mice produced by retroviral transduction of male germ-line stem cells. Proc Natl Acad Sci USA, 2001, 98(23): 13090–13095.
[4] Kanatsu-Shinohara M, Kato M, Takehashi M, Morimoto H, Takashima S, Chuma S, Nakatsuji N, Hirabayashi M, Shinohara T. Production of transgenic rats via lentiviral transduction and xenogeneic transplantation of sper-matogonial stem cells. Biol Reprod, 2008, 79(6): 1121–1128.
[5] Honaramooz A, Megee S, Zeng W, Destrempes MM, Overton SA, Luo J, Galantino-Homer H, Modelski M, Chen F, Blash S, Melican DT, Gavin WG, Avres S, Yang F, Wang PJ, Echelard Y, Dobrinski I. Adeno-associated virus (AAV)-mediated transduction of male germ line stem cells results in transgene transmission after germ cell transplantation. FASEB, 2008, 22(2): 374–382.
[6] Herpin A, Fischer P, Liedtke D, Kluever N, Neuner C, Raz E, Schartl M. Sequential SDF1a and b-induced mobility guides Medaka PGC migration. Dev Biol, 2008, 320(2): 319–327.
[7] Naito M, Matsubara Y, Harumi T, Tagami T, Sakurai M, Kuwana T. Foreign gene expression in the gonads of chi-maeric chicken embryos by transfer of primordial germ cells transfected in vitro by lipofection for 24 hours. Anim Sci J, 2002, 71(3): 308–311.
[8] Van de Lavoir MC, Diamond JH, Leighton PA, Mather-Love C, Heyer BS, Bradshaw R, Kerchner A, Hooi LT, Gessaro TM, Swanberg SE, Delany ME, Etches RJ. Germline transmission of genetically modified primordial germ cells. Nature, 2006, 441(7094): 766–769.
[9] Brinster RL, Avarbock MR. Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci USA, 1994, 91(24): 11303–11307.
[10] Mueller S, Prelle K, Rieger N, Petznek H, Lassnig C, Luksch U, Aigner B, Baetscher M, Wolf E, Mueller M, Brem G. Chimeric pigs following blastocyst injection of transgenic porcine primordial germ cells. Mol Reprod Dev, 1999, 54(3): 244–254.
[11] Leighton PA, van de Lavoir MC, Diamond JH, Xia C, Etches RJ. Genetic modification of primordial germ cells by gene trapping, gene targeting, and phiC31 integrase. Mol Reprod Dev, 2008, 75(7): 1163–1175.
[12] Suraeva NM, Baryshnikov AIu, Fisinin VI, Prokof, ev MI. Efficacy of various methods of a reporter gene transfer to chicken embryonic cells. Izv Akad Nauk Ser Biol, 2008(1): 18–23.
[13] Bradley A, Evans M, Kaufman MH, Robertson E. Forma-tion of germ-line chimaeras from embryo-derived terato-carcinom a cell lines. Nature, 1984, 309(5965): 255–256.
[14] Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell, 1987, 51(3): 503–512.
[15] McCreath KJ, Howcroft J, Campbell KH, Colman A, Schnieke AE, Kind AJ. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature, 2000, 405(6790): 1066–1069.
[16] Marques MM, Thomson AJ, McCreath KJ, McWhir J. Conventional gene targeting protocols lead to loss of tar-geted cells when applied to a silent gene locus in primary fibroblasts. J Biotechnol, 2006, 125(2): 185–193.
[17] Yang XY, Li H, Ma QW, Yan JB, Zhao JG, Li HW, Shen HQ, Liu HF, Huang Y, Huang SZ, Zeng YT, Zeng F. Improved efficiency of bovine cloning by autologous somatic cell nu-clear transfer. Reproduction, 2006, 132(5): 733–739.
[18] Kuroiwa Y, Kasinathan P, Matsushita H, Sathiyaselan J, Sullivan EJ, Kakitani M, Tomizuka K, Ishida I, Robl JM. Sequential targeting of the genes encoding immunoglobu-lin-μ and prion protein in cattle. Nat Genet, 2004, 36(7): 775–780.
[19] Wall RJ, Powell AM, Paape MJ, Kerr DE, Bannerman DD, Pursel VG, Wells KD, Talbot N, Hawk HW. Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat Biotechnol, 2005, 23(4): 445–451.
[20] Lai L, Kang JX, Li R, Wang J, Witt WT, Yong HY, Hao Y, Wax DM, Murphy CN, Rieke A, Samuel M, Linville ML, Korte SW, Evans RW, Starzl TE, Prather RS, Dai Y. Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat Biotechnol, 2006, 24(4): 435–436.
[21] Baldassarre H, Hockley DK, Dore M, Brochu E, Hakier B, Zhao X, Bordiqnon V. Lactation performance of transgenic goats expressing recombinant human butyryl-cholinesterase in the milk. Transqenic Res, 2008, 17(1): 73–84.
[22] Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science, 1994, 265(5168): 103–106.
[23] Sakahara M, Ohkawara H, Nakao K, Yokozaki H, Aiba A. The simultaneous induction of tumorigenesis and Cre-loxP recombination in mice. Kobe J Med Sci, 2009, 54(6): 279–281.
[24] Kyoungmi K, Hwain K, Daekee L. Site-specific modifica-tion of genome with cell-permeable Cre fusion protein in preimplantation mouse embryo. Biochem Biophys Res Commun, 2009, 388(1): 122–123.
[25] Wakita T, Taya C, Katsume A, Kato J, Yonekawa H, Kanegae Y, Saito I, Hayashi Y, Koike M, Kohara M. J Biol Chem, 1998, 273(15): 9001–9006.
[26] Metzger D, Chambon P. Site-and time-specific gene tar-geting in the mouse. Methods, 2001, 24(1): 71–80.
[27] Yu J, McMahon AP. Reproducible and inducible knock-down of gene expression in mice. Genesis, 2006, 44(5): 252–261.
[28] Rendahl KG, Ouiroz D , Ladner M, Covne M, Seltzer J, Manning WC, Escobedo JA. Tightly regulated long-term erythropoietin expression in vivo using tet-inducible re-combinant adeno-associated viral vectors. Hum Gene Ther, 2002, 13(2): 335–342.
[29] Chenuaud P, Larcher T, Rabinowitz JE, Provost N, Joussemet B, Bujard H, Samulski RJ, Favre D, Moullier P. Optimal design of a single recombinant adeno-associated virus derived from serotypes 1 and 2 to achieve more tightly regulated transgene expression from nonhuman primate muscle. Mol Ther, 2004, 9(3): 410–418.
[30] Rettig GR, Rice KG. Quantitative in vivo imaging of Non-viral-Mediated gene expression and RNAi-Mediated knockdown. Methods Mol Biol, 2009, 574: 155–171.
[31] McAnuff MA, Rettig GR, Rice KG. Potency of siRNA versus shRNA mediated knockdown in vivo. J Pharm Sci, 2007, 96(11): 2922–2930.
[32] Acosta J, Carpio Y, Borroto I, González O, Estrada MP. Myostatin gene silenced by RNAi show a zebrafish giant phenotype. J Biotechnol, 2005, 119(4): 324–331.
[33] Pfeifer A, Eigenbrod S, Al-Khadra S, Hofmann A, Mit-tereqqer G, Moser M, Bertsch U, Kretzschmar H. Len-tivector-mediated RNAi efficiently suppresses prion pro-tein and prolongs survival of scrapie-infected mice. J Clin Inves, 2007, 116(12): 3204–3210.
[34] Dickins RA, McJunkin K, Hernando E, Premsrirut PK, Krizhanovsky V, Burgess DJ, Kim DY, Cordon-Cardo C, Zender L, Hannon GJ, Lowe SW. Tissue-specific and re-versible RNA interference in transgenic mice. Nat Genet, 2007, 39(7): 914–921.
[35] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663–676.
[36] Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourqet J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stew-art R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007, 318(5858): 1917–1920.
[37] Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T, Hao J, Guo CL, Ma QW, Wang L, Zeng F, Zhou Q. iPS cells produce viable mice through tetraploid complementation. Nature, 2009, 461(7260): 86–90.
[38] Kang L, Wang JL, Zhang Y, Kou ZH, Gao SR. iPS cells can support full-term development of tetraploid blasto-cyst-complemented embryos. Cell Stem Cell, 2009, 5(2): 135–138.
[39] Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichi-saka T, Aoi T, Mochiduki Y, Takizawa N, Yamanaka S. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol, 2008, 26(1): 101–106.
[40] Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Arauzo-Bravo MJ, Ruau D, Han DW, Scholer HR. Pluri-potent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature, 2008, 454(7204): 646–650.
[41] Huangfu D, Maehr R, Guo WJ, Eijkelenboom A, Snitow M, Chen AE, Melton DA. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule com-pounds. Nat Biotechnol, 2008, 26(7): 795–797.
[42] Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovskv M, Hamalainen R, Cowling R, Wang W, Liu P, Gertsen-stein M, Kaji K, Sung HK, Naqy A. piggyBac transposi-tion reprograms fibroblasts to induced pluripotent stem cells. Nature, 2009, 458(7239): 766–770.
[43] Hanna J, Markoulaki S, Schorderet P, Carey BW, Beard C, Werniq M, Creyghton MP, Steine EJ, Cassady JP, Fore-man R, Lenqner CJ, Dausman JA, Jaenisch R. Direct re-programming of terminally differentiated mature B lym-phocytes to pluripotency. Cell, 2008, 133(2): 250–264. |