[1] Maier S, Olek A. Diabetes: a candidate disease for efficient DNA methylation profiling. J Nutr , 2002, 132(8): 2440S-2443S. [2] Barrès R, Osler ME, Yan J, Rune A, Fritz T, Caidahl K, Krook A, Zierath JR. Non-CpG methylation of the PGC-lα promoter through DNMT3B controls mitochondrial density. Cell Metab , 2009, 10(3): 189-198. [3] 霍丽梅, 宋光耀, 叶蔚. 脂联素与2型糖尿病发生发展的研究进展. 临床汇萃, 2005, 20(1): 54-56. [4] 徐忠星, 张和占, 买买提·西日甫, 买买提阿不拉艾山, 库热西江·托乎提, 程钦, 董宇莉, 依米提, 艾山江. 新疆墨玉县维吾尔族糖尿病患病率调查. 中国基层医药, 2002, 9(3): 221. [5] Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem , 1995, 270(45): 26746-26749. [6] Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T. The fat-derived hormonead-iponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med , 2001, 7(8): 941-946. [7] Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H, Kuriyama H, Ouchi N, Maeda K, Nishida M, Kihara S, Sakai N, Nakajima T, Hasegawa K, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Hanafusa T, Matsuzawa Y. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Bio , 2000, 20(6): 1595-1599. [8] Abbasi F, Chu JW, Lamendola C, McLaughlin T, Hayden J, Reaven GM, Reaven PD. Discrimination between obesity and insulin resistance in the relationship with adiponectin. Diabetes , 2004, 53(3): 585-590. [9] Côté M, Mauriège P, Bergeron J, Alméras N, Tremblay A, Lemieux I, Després JP. Adiponectinemia in visceral obesity: impact on glucose tolerance and plasma lipo protein and lipid levels in men. J Clin Endocrinol Metab , 2005, 90(3): 1434-1439. [10] Lindsay RS, Funahashi T, Hanson RL, Matsuzawa Y, Tanaka S, Tataranni PA, Knowler WC, Krakoff J. Adiponectin and development of type 2 diabetes in the pima Indian population. Lancet , 2002, 360(9326): 57-58. [11] Bobbert T, Rochlitz H, Wegewitz U, Akpulat S, Mai K, Weickert MO, Möhlig M, Pfeiffer AF, Spranger J. Changes of adiponectin oligomer composition by moderate weight reduction. Diabetes , 2005, 54(9): 2712-2719. [12] Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, Furuyama N, Kondo H, Takahashi M, Arita Y, Komuro R, Ouchi N, Kihara S, Tochino Y, Okutomi K, Horie M, Takeda S, Aoyama T, Funahashi T, Matsuzawa Y. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med , 2002, 8(7): 731-737. [13] Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, Eto K, Yamashita T, Kamon J, Satoh H, Yano W, Froguel P, Nagai R, Kimura S, Kadowaki T, Noda T. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem , 2002, 277(29): 25863- 25866. [14] Hotta K, Funahashi T, Bodkin NL, Ortmeyer HK, Arita Y, Hansen BC, Matsuzawa Y. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkey. Diabetes , 2001, 50(5): 1126-1133. [15] Dwivedi RS, Herman JG, McCaffrey TA, Raj DS. Beyond genetics: epigenetic code in chronic kidney disease. Kidney Int , 2011, 79(1): 23-32. [16] Bechtel W, McGoohan S, Zeisberg EM, Müller GA, Kalbacher H, Salant DJ, Müller CA, Kalluri R, Zeisberg M. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med , 2010, 16(5): 544-550. [17] Laborie LB, Mackay DJG, Temple IK, Molven A, Søvik O, Njølstad PR. DNA hypomethylation, transient neonatal diabetes, and prune |