[1] | Coello P, Hey SJ, Halford NG . The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. J Exp Bot, 2010,62(3):883-893. | [2] | Halford NG, Hey SJ . Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signaling in plants. Biochem J, 2009,419(2):247-59. | [3] | Yang L, Ji W, Gao P, Li Y, Cai H, Bai X, Chen Q, Zhu YM . GsAPK, an ABA-activated and calcium-independent SnRK2-type kinase from G. soja, mediates the regulation of plant tolerance to salinity and ABA stress. PLoS One, 2012,7(3):e33838. | [4] | Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK . Regulation of SOS1, a plasma membrane Na +/H + exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA, 2002,99(12):8436-8441. | [5] | Ding X, Richter T, Chen M, Fujii H, Seo YS, Xie M, Zheng X, Kanrar S, Stevenson RA, Dardick C, Li Y, Jiang H, Zhang Y, Yu F, Bartley LE, Chern M, Bart R, Chen X, Zhu L, Farmerie WG, Gribskov M, Zhu JK, Fromm ME, Ronald PC, Song WY . A rice kinase-protein interaction map. Plant Physiol, 2008,149(3):1478-1492. | [6] | Song Y, Zhang H, You HG, Liu YM, Chen C, Feng X, Yu XY, Wu SY, Wang LB, Zhong SH, Li Q, Zhu YM, Ding XD . Identification of novel interactors and potential phosphorylation substrates of GsSnRK1 from wild soybean ( Glycine soja). Plant Cell Envir, 2018, doi: 10.1111/ pce.13217. | [7] | Hong SP, Carlson M . Regulation of Snf1 protein kinase in response to environmental stress. J Biol Chem, 2007,282(23):16838-16845. | [8] | Liu XJ, Liu X, An XH, Han PL, You CX, Hao YJ . An apple protein kinase MdSnRK1.1 interacts with MdCAIP1 to regulate ABA sensitivity. Plant Cell Physiol, 2017,58(10):1631-1641. | [9] | Schlueter JA, Lin JY, Schlueter SD, Vasylenko-Sanders IF, Deshpande S, Yi J, O'Bleness M, Roe BA, Nelson RT, Scheffler BE, Jackson SA, Shoemaker RC . Gene duplication and paleopolyploidy in soybean and the implications for whole genome sequencing. BMC Genomics, 2007,8:330. | [10] | Nakano M, Yamada T, Masuda Y, Sato Y, Kobayashi H, Ueda H, Morita R, Nishimura M, Kitamura K, Kusaba M . A green-cotyledon/stay-green mutant exemplifies the ancient whole-genome duplications in soybean. Plant Cell Physiol, 2014,55(10):1763-1771. | [11] | Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F . Multiplex genome engineering using CRISPR/Cas systems. Science, 2013,339(6121):819-823. | [12] | Zhou HB, Liu B, Weeks DP, Spalding MH, Yang B . Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res, 2014,42(17):10903-10914. | [13] | Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Jeff Xi J, Qiu J, Gao C . Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol, 2013,31(8):686-688. | [14] | Xu R, Li H, Qin R, Wang L, Li L, Wei P, Yang J . Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice, 2014; 7(1):5. | [15] | Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP . Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res, 2013,41(20):e188. | [16] | Wang JF, Zhang CM, Liu W, Luo WL, Wang H, Chen ZQ, Guo T . Constrution of tgw6 mutants in rice based on CRISPR/Cas9 technology. Acta Agron Sin, 2016,42(8):1160-1167. | [16] | 王加峰, 郑才敏, 刘维, 罗文龙, 王慧, 陈志强, 郭涛 . 基于CRISPR/Cas9技术的水稻千粒重基因tgw6突变体的创建. 作物学报, 2016,42(8):1160-1167. | [17] | ?ermák T, Baltes NJ, ?egan R, Zhang Y, Voytas DF . High-frequency, precise modification of the tomato genome. Genome Biol, 2015,16(1):232. | [18] | Upadhyay SK, Kumar J, Alok A, Tuli R . RNA-Guided genome editing for target gene mutations in wheat. G3 (Bethesda, Md.), 2013,3(12):2233-2238. | [19] | Liang Z, Zhang K, Chen K, Gao C . Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics, 2014,41(2):63-68. | [20] | Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA . Targeted genome modifications in soybean with CRISPR/ Cas9. BMC Biotechnol, 2015,15:16. | [21] | Cai Y, Chen L, Liu X, Sun S, Wu C, Jiang B, Han T, Hou W . CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS One, 2015,10(8):e0136064. | [22] | Du H, Zeng X, Zhao M, Cui X, Wang Q, Yang H, Cheng H, Yu D . Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. J Biotechnol, 2015,217:90-97. | [23] | Cai YP, Chen L, Liu XJ, Chen G, Sun S, Wu CX, Jiang BJ, Han TF, Hou WS . CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnol J, 2018, 16(1):176-185. | [24] | Nour-Eldin HH, Hansen BG, N?rholm MH, Jensen JK, Halkier BA . Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucleic Acids Res, 2006,34(18):e122. | [25] | Lei Y, Lu L, Liu HY, Li S, Xing F, Chen LL . CRISPR-P: A web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant, 2014,7(9):1494-1496. | [26] | Liu TT, Fan D, Ran LY, Jiang YZ, Liu R, Luo KM . Highly efficient CRISPR/Cas9-mediated targeted mutagenesis of multiple genes in Populus. Hereditas (Beijing). 2015,37(10):1044-1052. | [26] | 刘婷婷, 范迪, 冉玲玉, 姜渊忠, 刘瑞, 罗克明 . 应用CRISPR/Cas9技术在杨树中高效敲除多个靶基因. 遗传, 2015,37(10):1044-1052. | [27] | Xu RF, Li H, Qin RY, Li J, Qiu CH, Yang YC, Ma H, Li L, Wei PC, Yang JB . Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci Rep, 2015,5:11491. | [28] | Doudna JA, Charpentier E . Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014,346(6213):1258096. | [29] | Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng ZL, Gonzales APW, Li ZY, Peterson RT, Yeh JJ, Aryee MJ, Joung JK . Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 2015,523(7561):481-485. | [30] | Xu H, Xiao TF, Chen CH, Li W, Meyer CA, Wu Q, Wu D, Cong L, Zhang F, Liu JS, Brown M, Liu SX . Sequence determinants of improved CRISPR sgRNA design. Genome Res, 2015,25(8):1147-1157. | [31] | Shan QW, Gao CX . Research progress of genome editing and derivative technologies in plants. Hereditas (Beijing), 2015,37(10):953-973. | [31] | 单奇伟, 高彩霞 . 植物基因组编辑及衍生技术最新研究进展. 遗传, 2015,37(10):953-973. | [32] | Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F . Rationally engineered Cas9 nucleases with improved specificity. Science, 2016,351(6268):84-88. | [33] | Lee CM, Cradick TJ, Bao G . The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells. Mol Ther, 2016,24(3):645-654. | [34] | Sheng XS, Zhang Y, Zhang LS, Li GL, Zhao CZ, Ni P, Zhao SH . SgRNA design for the CRISPR/Cas9 system and evaluation of its off-target effects. Hereditas (Beijing), 2015,37(11):1125-1136. | [34] | 谢胜松, 张懿, 张利生, 李广磊, 赵长志, 倪攀, 赵书红 . CRISPR/Cas9系统中sgRNA设计与脱靶效应评估. 遗传, 2015,37(11):1125-1136. | [35] | Liu W, Xie X, Ma X, Li J, Chen J, Liu YG . DSDecode: A web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations. Mol Plant, 2015,8(9):1431-1433. | [36] | Lin CR, Lee KW, Chen CY, Hong YF, Chen JL, Lu CA, Chen KT, Ho TH, Yu SM . SnRK1A-interacting negative regulators modulate the nutrient starvation signaling sensor SnRK1 in source-sink communication in cereal seedlings under abiotic stress. Plant Cell, 2014,26(2):808-827. |
|