遗传 ›› 2019, Vol. 41 ›› Issue (10): 893-904.doi: 10.16288/j.yczz.19-065
• 综述 • 下一篇
收稿日期:
2019-04-08
修回日期:
2019-06-08
出版日期:
2019-10-20
发布日期:
2019-06-10
通讯作者:
范怡梅
E-mail:ymfan@nju.edu.cn
作者简介:
潘云枫,本科生,专业方向:临床医学。E-mail: 基金资助:
Yunfeng Pan,Yanyi Wang,Jingwen Chen,Yimei Fan()
Received:
2019-04-08
Revised:
2019-06-08
Online:
2019-10-20
Published:
2019-06-10
Contact:
Fan Yimei
E-mail:ymfan@nju.edu.cn
Supported by:
摘要:
线粒体是细胞物质代谢与能量代谢的中心,在多种生理和病理过程中扮演着重要角色。表观遗传修饰是一种独立于DNA序列并在建立与维持特定基因表达谱中发挥主要作用的遗传调控模式。近年来的研究表明,线粒体能量代谢通过中间产物,介导线粒体-核信号的传递,调节染色质的表观修饰状态,进而影响基因表达。线粒体代谢紊乱可以诱导表观遗传重编程,进而启动衰老表型及退行性疾病的发生。本文综述了线粒体代谢与染色质表观遗传修饰关系的研究进展,探讨了线粒体应激在染色质重组中发挥的作用,展望了其在认知功能障碍等衰老相关性疾病研究中的前景。
潘云枫, 王演怡, 陈静雯, 范怡梅. 线粒体代谢介导的表观遗传改变与衰老研究[J]. 遗传, 2019, 41(10): 893-904.
Yunfeng Pan, Yanyi Wang, Jingwen Chen, Yimei Fan. Mitochondrial metabolism’s effect on epigenetic change and aging[J]. Hereditas(Beijing), 2019, 41(10): 893-904.
[1] | Peleg S, Feller C, Ladurner AG, Imhof A . The metabolic impact on histone acetylation and transcription in ageing. Trends Biochem Sci, 2016,41(8):700-711. |
[2] | Taylor EM, Jones AD, Henagan TM . A review of Mitochondrial-derived fatty acids in epigenetic regulation of obesity and type 2 diabetes. J Nutr Health Food Sci, 2014,2(3):1-4. |
[3] | Ziegler DV, Wiley CD, Velarde MC . Mitochondrial effectors of cellular senescence: beyond the free radical theory of aging. Aging Cell, 2014,14(1):1-7. |
[4] | Hausinger RP . FeII/alpha-ketoglutarate-dependent hydroxylases and related enzymes. Crit Rev Biochem Mol, 2004,39(1):21-68. |
[5] | Salminen A, Haapasalo A, Kauppinen A, Kaarniranta K, Soininen H, Hiltunen M . Impaired mitochondrial energy metabolism in Alzheimer's disease: impact on pathogenesis via disturbed epigenetic regulation of chromatin landscape. Prog Neurobiol, 2015,131:1-20. |
[6] | Salminen A, Kaarniranta K, Hiltunen M, Kauppinen A . Krebs cycle dysfunction shapes epigenetic landscape of chromatin: novel insights into mitochondrial regulation of aging process. Cell Signal, 2014,26(7):1598-1603. |
[7] | Salminen A, Kauppinen A, Hiltunen M, Kaarniranta K . Krebs cycle intermediates regulate DNA and histone methylation: epigenetic impact on the aging process. Ageing Res Rev, 2014,16:45-65. |
[8] | Sun N, Youle RJ, Finkel T . The mitochondrial basis of aging. Mol Cell, 2016,61(5):654-666. |
[9] | Breuer ME, Koopman WJ, Koene S, Nooteboom M, Rodenburg RJ, Willems PH, Smeitink JA . The role of mitochondrial OXPHOS dysfunction in the development of neurologic diseases. Neurobiol Dis, 2013,51:27-34. |
[10] | Chaturvedi RK, Flint Beal M . Mitochondrial diseases of the brain. Free Radic Biol Med, 2013,63:1-29. |
[11] | Benayoun BA, Pollina EA, Brunet A . Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Bio, 2015,16(10):593-610. |
[12] | Mccauley BS, Dang W . Histone methylation and aging: lessons learned from model systems. Biochim Biophys Acta-Mol Basis Dis, 2014,1839(12):1454-1462. |
[13] | Guan JS, Xie H, Ding X . The role of epigenetic regulation in learning and memory. Exp Neurol, 2014,268:30-36. |
[14] | Sen N . Epigenetic regulation of memory by acetylation and methylation of chromatin: implications in neurological disorders, aging, and addiction. Neuromol Med, 2014,17(2):97-110. |
[15] | Gr?ff J, Tsai LH . Histone acetylation: molecular mnemonics on the chromatin. Nat Rev Neurosci, 2013,14(2):97-111. |
[16] | Gr?ff J, Rei D, Guan JS, Wang WY, Seo J, Hennig KM, Nieland TJ, Fass DM, Kao PF, Kahn M, Su SC, Samiei A, Joseph N, Haggarty SJ, Delalle I, Tsai LH . An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature, 2012,483(7388):222-226. |
[17] | Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari- Javan S, Agis-Balboa RC, Cota P, Wittnam JL, Gogol- Doering A, Opitz L, Salinas-Riester G, Dettenhofer M, Kang H, Farinelli L, Chen W, Fischer A . Altered histone acetylation is associated with age-dependent memory impairment in mice. Science, 2010,328(5979):753-756. |
[18] | Zhang K, Schrag M, Crofton A, Trivedi R, Vinters H, Kirsch W . Targeted proteomics for quantification of histone acetylation in Alzheimer's disease. Proteomics, 2012,12(8):1261-1268. |
[19] | Bie B, Wu J, Yang H, Xu JJ, Brown DL, Naguib M . Epigenetic suppression of neuroligin 1 underlies amyloid- induced memory deficiency. Nat Neurosci, 2014,17(2):223-231. |
[20] | Kugel S, Mostoslavsky R . Chromatin and beyond: the multitasking roles for SIRT6. Trends Biochem Sci, 2014,39(2):72-81. |
[21] | Poulose N, Raju R . Sirtuin regulation in aging and injury. Biochim Biophys Acta-Mol Basis Dis, 2015,1852(11):2442-2455. |
[22] | W?troba M, Dudek I, Skoda M, Stangret A, Rzodkiewicz P, Szukiewicz D . Sirtuins, epigenetics and longevity. Ageing Res Rev, 2017,40:11-19. |
[23] | Li W, Prazak L, Chatterjee N, Grüninger S, Krug L, Theodorou D, Dubnau J . Activation of transposable elements during aging and neuronal decline in drosophila. Nat Neurosci, 2013,16(5):529-531. |
[24] | O'sullivan RJ, Karlseder J . The great unravelling: chromatin as a modulator of the aging process. Trends Biochem Sci, 2012,37(11):466-476. |
[25] | Frost B, Hemberg M, Lewis J, Feany MB . Tau promotes neurodegeneration through global chromatin relaxation. Nat Neurosci, 2014,17(3):357-366. |
[26] | Agger K, Cloos PA, Rudkjaer L, Williams K, Andersen G, Christensen J, Helin K . The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes Dev, 2009,23(10):1171-1176. |
[27] | Han Y, Han D, Yan Z, Boyd-Kirkup JD, Green CD, Khaitovich P, Han JD . Stress-associated H3K4 methylation accumulates during postnatal development and aging of rhesus macaque brain. Aging Cell, 2012,11(6):1055-1064. |
[28] | Tan L, Shi YG . Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development, 2012,139(11):1895-1902. |
[29] | Wang J, Zhang KX, Lu GZ, Zhao XH . Research progress on 5hmC and TET dioxygenases in neurodevelopment and neurological diseases. Hereditas (Beijing), 2017,39(12):1138-1149. |
王建, 张凯翔, 芦国珍, 赵湘辉 . 5-羟甲基胞嘧啶及其TET氧合酶在神经系统发育和相关疾病中的研究进展. 遗传, 2017,39(12):1138-1149. | |
[30] | Neri F, Rapelli S, Krepelova A, Incarnato D, Parlato C, Basile G, Maldotti M, Anselmi F, Oliviero S . Intragenic DNA methylation prevents spurious transcription initiation. Nature, 2017,543(7643):72-77. |
[31] | Puttipanyalears C, Subbalekha K, Mutirangura A, Kitkumthorn N . Alu hypomethylation in smoke-exposed epithelia and oral squamous carcinoma. Asian Pac J Cancer P, 2013,14(9):5495-5501. |
[32] | De Prins S, Koppen G, Jacobs G, Dons E, Van de Mieroop E, Nelen V, Fierens F, Int Panis L, De Boever P, Cox B, Nawrot TS, Schoeters G. Influence of ambient air pollution on global DNA methylation in healthy adults: a seasonal follow-up. Environ Int, 2013,59:418-424. |
[33] | Wu Z, Li X, Qin H, Zhu X, Xu J, Shi W . Ultraviolet B enhances DNA hypomethylation of CD4+ T cells in systemic lupus erythematosus via inhibiting DNMT1 catalytic activity. J Dermatol Sci, 2013,71(3):167-173. |
[34] | Raddatz G, Hagemann S, Aran D, S?hle J, Kulkarni PP, Kaderali L, Hellman A, Winnefeld M, Lyko F . Aging is associated with highly defined epigenetic changes in the human epidermis. Epigenet Chromat, 2013,6(1):36. |
[35] | Fernández AF, Bayon GF, Urdinguio RG, Tora?o EG, García MG, Carella A, Petrus-Reurer S, Ferrero C, Martinez-Camblor P, Cubillo I, García-Castro J, Delgado- Calle J, Pérez-Campo FM, Riancho JA, Bueno C, Menéndez P, Mentink A, Mareschi K, Claire F, Fagnani C, Medda E, Toccaceli V, Brescianini S, Moran S, Esteller M, Stolzing A, de Boer J, NisticòL, Stazi MA, Fraga MF . H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells. Genome Res, 2014,25(1):27-40. |
[36] | Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y, Dwork AJ, Schultz MD, Yu M, Tonti-Filippini J, Heyn H, Hu S, Wu JC, Rao A, Esteller M, He C, Haghighi FG, Sejnowski TJ, Behrens MM, Ecker JR . Global epigenomic reconfiguration during mammalian brain development. Science, 2013,341(6146):1237905. |
[37] | Phipps AJ, Vickers JC, Taberlay PC, Woodhouse A . Neurofilament-labeled pyramidal neurons and astrocytes are deficient in DNA methylation marks in Alzheimer's disease. Neurobiol Aging, 2016,45:30-42. |
[38] | Cho SH, Chen JA, Sayed F, Ward ME, Gao F, Nguyen TA, Krabbe G, Sohn PD, Lo I, Minami S, Devidze N, Zhou Y, Coppola G, Gan L . SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1β. J Neurosci, 2015,35(2):807-818. |
[39] | Deng Y, Yu G . The effect of DNA methylation on beta- amyloid accumulation in Alzheimer's disease. Hereditas (Beijing), 36(4): 2014: 295-300. |
邓钰双, 余刚 . 阿尔兹海默病中DNA 甲基化对β-淀粉样蛋白的影响. 遗传, 2014,36(4):295-300. | |
[40] | Jovaisaite V, Mouchiroud L, Auwerx J . The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. J Exp Biol, 2014,217(Pt 1):137-143. |
[41] | Duboff B, Feany M, Gotz J. Why size matters - balancing mitochondrial dynamics in Alzheimer's disease, Trends Neurosci 36(6) (2013) 325-35. |
[42] | Salminen A, Kauppinen A, Kaarniranta K . 2-Oxoglutarate- dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process, Cell Mol Life Sci,72(20) ( 2015):3897-914. |
[43] | Bai M, Yang L, Liao H, Liang X, Xie B, Xiong J, Tao X, Chen X, Cheng Y, Chen X, Feng Y, Zhang Z, Zheng W . Metformin sensitizes endometrial cancer cells to chemotherapy through IDH1-induced Nrf2 expression via an epigenetic mechanism, Oncogene, 2018,37(42):5666-5681. |
[44] | Letouze E, Martinelli C, Loriot C, Burnichon N, Abermil N, Ottolenghi C, Janin M, Menara M, Nguyen AT, Benit P, Buffet A, Marcaillou C, Bertherat J, Amar L, Rustin P, De Reynies A, Gimenez-Roqueplo AP, Favier J . SDH mutations establish a hypermethylator phenotype in paraganglioma, Cancer Cell, 2013,23(6):739-752. |
[45] | Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT, Liu LX, Jiang WQ, Liu J, Zhang JY, Wang B, Frye S, Zhang Y, Xu YH, Lei QY, Guan KL, Zhao SM, Xiong Y . Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell, 2011,19(1):17-30. |
[46] | Yang M, Soga T, Pollard PJ . Oncometabolites: linking altered metabolism with cancer. J Clin Invest, 2013,123(9):3652-3658. |
[47] | Londo?o Gentile T, Lu C, Lodato PM, Tse S, Olejniczak SH, Witze ES, Thompson CB, Wellen KE . DNMT1 Is regulated by ATP-Citrate lyase and maintains methylation patterns during adipocyte differentiation. Mol Cell Biol, 2013,33(19):3864-3878. |
[48] | Shyh-Chang N, Locasale JW, Lyssiotis CA, Zheng Y, Teo RY, Ratanasirintrawoot S, Zhang J, Onder T, Unternaehrer JJ, Zhu H, Asara JM, Daley GQ, Cantley LC . Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science, 2012,339(6116):222-226. |
[49] | Cuyàs E, Fernández-Arroyo S, Verdura S, García Rá, Stursa J, Werner L, Blanco-González E, Montes-Bayón M, Joven J, Viollet B, Neuzil J, Menendez JA . Metformin regulates global DNA methylation via mitochondrial one-carbon metabolism. Oncogene, 2018,37(7):963-970. |
[50] | Naviaux RK . Mitochondrial control of epigenetics. Cancer Biol Ther, 2008,7(8):1191-1193. |
[51] | Fiorese CJ, Haynes CM . Integrating the UPR mt into the mitochondrial maintenance network . Crit Rev Biochem Mol Biol, 2017,52(3):304-313. |
[52] | Nargund AM, Fiorese CJ, Pellegrino MW, Deng P, Haynes CM . Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPR(mt). Mol Cell, 2015,58(1):123-133. |
[53] | Nargund AM, Pellegrino MW, Fiorese CJ, Baker BM, Haynes CM . Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science, 2012,337(6094):587-590. |
[54] | Lin YF, Schulz AM, Pellegrino MW, Lu Y, Shaham S, Haynes CM . Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response. Nature, 2016,533(7603):416-419. |
[55] | Wu Y, Williams EG, Dubuis S, Mottis A, Jovaisaite V, Houten SM, Argmann CA, Faridi P, Wolski W, Kutalik Z, Zamboni N, Auwerx J, Aebersold R . Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population. Cell, 2014,158(6):1415-1430. |
[56] | Fiorese CJ, Schulz AM, Lin YF, Rosin N, Pellegrino MW, Haynes CM . The transcription factor ATF5 mediates a mammalian mitochondrial UPR. Curr Biol, 2016,26(15):2037-2043. |
[57] | Arnould T, Michel S, Renard P . Mitochondria retrograde signaling and the UPR mt: where are we in mammals? Int J Mol Sci, 2015,16(8):18224-18251. |
[58] | Merkwirth C, Jovaisaite V, Durieux J, Matilainen O, Jordan SD, Quiros PM, Steffen KK, Williams EG, Mouchiroud L, Tronnes SU, Murillo V, Wolff SC, Shaw RJ, Auwerx J, Dillin A . Two conserved histone demethylases regulate mitochondrial Stress-Induced longevity. Cell, 2016,165(5):1209-1223. |
[59] | Tian Y, Garcia G, Bian Q, Steffen KK, Joe L, Wolff S, Meyer BJ, Dillin A . Mitochondrial stress induces chromatin reorganization to promote longevity and UPR (mt). Cell, 2016,165(5):1197-1208. |
[60] | Xiao M, Yang H, Xu W, Ma S, Lin H, Zhu H, Liu L, Liu Y, Yang C, Xu Y, Zhao S, Ye D, Xiong Y, Guan KL . Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Gene Dev, 2012,26(12):1326-1338. |
[61] | Fiorese CJ, Haynes CM . Integrating the UPRmt into the mitochondrial maintenance network. Crit Rev Biochem Mol, 2017,52(3):304-313. |
[62] | Tatar M, Sedivy JM . Mitochondria: masters of epigenetics. Cell, 2016,165(5):1052-1054. |
[63] | Gray MW . Mitochondrial evolution. CSH Perspect Biol, 2012,4(9):a011403. |
[64] | Lane N, Martin W . The energetics of genome complexity. Nature, 2010,467(7318):929-934. |
[65] | Chestnut BA, Chang Q, Price A, Lesuisse C, Wong M, Martin LJ . Epigenetic regulation of motor neuron cell death through DNA methylation. J Neurosci, 2011,31(46):16619-16636. |
[66] | Infantino V, Castegna A, Iacobazzi F, Spera I, Scala I, Andria G, Iacobazzi V . Impairment of methyl cycle affects mitochondrial methyl availability and glutathione level in Down's syndrome. Mol Genet Metab, 2010,102(3):378-382. |
[67] | Shock LS, Thakkar PV, Peterson EJ, Moran RG, Taylor SM . DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc Natl Acad Sci USA, 2011,108(9):3630-3635. |
[68] | Dzitoyeva S, Chen H, Manev H . Effect of aging on 5-hydroxymethylcytosine in brain mitochondria. Neurobiol Aging, 2012,33(12):2881-2891. |
[69] | Bellizzi D, D'aquila P, Scafone T, Giordano M, Riso V, Riccio A, Passarino G . The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern. DNA Res, 2013,20(6):537-547. |
[70] | Byun HM, Panni T, Motta V, Hou L, Nordio F, Apostoli P, Bertazzi PA, Baccarelli AA . Effects of airborne pollutants on mitochondrial DNA methylation. Part Fibre Toxicol, 2013,10:18. |
[71] | Manev H, Dzitoyeva S . Progress in mitochondrial epigenetics. Biomol Concepts, 2013,4(4):381-389. |
[72] | Pirola CJ, Gianotti TF, Burgue?o AL, Rey-Funes M, Loidl CF, Mallardi P, Martino JS, Casta?o GO, Sookoian S . Epigenetic modification of liver mitochondrial DNA is associated with histological severity of nonalcoholic fatty liver disease. Gut, 2012,62(9):1356-1363. |
[73] | Feng S, Xiong L, Ji Z, Cheng W, Yang H . Correlation between increased ND2 expression and demethylated displacement loop of mtDNA in colorectal cancer. Mol Med Rep, 2012,6(1):125-130. |
[74] | Ghosh S, Sengupta S, Scaria V . Comparative analysis of human mitochondrial methylomes shows distinct patterns of epigenetic regulation in mitochondria. Mitochondrion, 2014,18:58-62. |
[75] | Blanch M, Mosquera JL, Ansoleaga B, Ferrer I, Barrachina M . Altered mitochondrial DNA methylation pattern in alzheimer Disease-Related pathology and in Parkinson Disease. Am J Pathol, 2016,186(2):385-397. |
[76] | D'aquila P, Bellizzi D, Passarino G . Mitochondria in health, aging and diseases: the epigenetic perspective. Biogerontology, 2015,16(5):569-585. |
[77] | Jahangir A, Ozcan C, Holmuhamedov EL, Terzic A . Increased calcium vulnerability of senescent cardiac mitochondria: protective role for a mitochondrial potassium channel opener. Mech Ageing Dev, 2001,122(10):1073-1086. |
[1] | 何山, 赵健, 宋晓峰. N6-甲基腺苷修饰对女性生殖系统功能的影响[J]. 遗传, 2023, 45(6): 472-487. |
[2] | 商晓康, 张思萌, 倪军军. 组织蛋白酶B参与脑衰老及阿尔兹海默症发生发展研究进展[J]. 遗传, 2023, 45(3): 212-220. |
[3] | 张茜, 王子豪, 田烨. 跨组织线粒体应激信号交流调控机体衰老研究进展[J]. 遗传, 2023, 45(3): 187-197. |
[4] | 黎嘉丽, 李瑾, 汪虎. 衰老相关的蛋白稳态失衡[J]. 遗传, 2022, 44(9): 733-744. |
[5] | 许梦萱, 周明. 植物RNA聚合酶IV调控DNA甲基化和发育的研究进展[J]. 遗传, 2022, 44(7): 567-580. |
[6] | 张子寅, 周燕萍, 孟卓贤. CUT&Tag技术在代谢组织细胞的实验操作[J]. 遗传, 2022, 44(10): 958-966. |
[7] | 王雅楠, 徐涛, 王万鹏, 张庆祝, 解莉楠. 表观遗传修饰在作物重要性状形成中的作用[J]. 遗传, 2021, 43(9): 858-879. |
[8] | 袁洁, 蔡时青. 衰老过程中行为和认知功能退化的调控机制研究[J]. 遗传, 2021, 43(6): 545-570. |
[9] | 王天一, 王应祥, 尤辰江. 植物PHD结构域蛋白的结构与功能特性[J]. 遗传, 2021, 43(4): 323-339. |
[10] | 张向前, 李楠, 解新明. 表观遗传学综合性实验设计与探讨[J]. 遗传, 2021, 43(12): 1179-1187. |
[11] | 刘紫妍, 高艾. 炎性衰老在血液系统疾病中的研究进展[J]. 遗传, 2021, 43(12): 1132-1141. |
[12] | 刘学文, 吴红梅, 白瑛, 曾群, 曹泽民, 吴秀山, 唐旻. 钾离子通道蛋白Shaker对果蝇心脏衰老的保护作用[J]. 遗传, 2021, 43(1): 94-99. |
[13] | 王芯悦, 李亮, 段秋慧, 李大力, 陈金联. Uhrf1对肠上皮发育的影响[J]. 遗传, 2021, 43(1): 84-93. |
[14] | 崔亨贞, 孙蜜烛, 王润芝, 李辰雨, 黄予暄, 黄秋菊, 乔晓孟. 内侧前额叶皮质DNA甲基化调控大鼠酒精相关行为[J]. 遗传, 2020, 42(1): 112-125. |
[15] | 王昕源, 张雨, 杨楠, 程禾, 孙玉洁. DNMT3a通过提升基因内部甲基化介导紫杉醇诱导的LINE-1异常表达[J]. 遗传, 2020, 42(1): 100-111. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: