遗传 ›› 2024, Vol. 46 ›› Issue (10): 820-832.doi: 10.16288/j.yczz.24-156
章子怡1,2(), 王棨临1,2, 张俊有1,2, 段迎迎1,2, 刘家欣1,2, 刘赵硕1,2, 李春燕1,2,3,4(
)
收稿日期:
2024-05-31
修回日期:
2024-08-18
出版日期:
2024-08-19
发布日期:
2024-08-19
通讯作者:
李春燕,博士,副教授,研究方向:功能基因组学。E-mail: lichunyan@buaa.edu.cn作者简介:
章子怡,硕士研究生,专业方向:生物医学工程。E-mail: zhangziyi@buaa.edu.cn
基金资助:
Ziyi Zhang1,2(), Qilin Wang1,2, Junyou Zhang1,2, Yingying Duan1,2, Jiaxin Liu1,2, Zhaoshuo Liu1,2, Chunyan Li1,2,3,4(
)
Received:
2024-05-31
Revised:
2024-08-18
Published:
2024-08-19
Online:
2024-08-19
Supported by:
摘要:
乳腺癌的高度异质性导致其治疗及预后评估较为复杂。治疗方案的选择受到肿瘤亚型、病变分级、基因型等多种因素的影响,因此需要制定个体化治疗策略。患者的预后效果因病情不同而产生显著差异。作为人工智能的一个重要分支,机器学习能高效处理海量数据,并实现决策过程的自动化。机器学习方法的引入将为乳腺癌治疗的选择和预后评估提供新的解决方案。在癌症治疗领域,传统方法预测生存与治疗效果往往依赖于单一或少量的生物标志物,难以全面捕捉复杂的生物学过程。机器学习通过分析患者的多组学数据以及它们在疾病发生发展过程中复杂的变化趋势,预测患者的生存和治疗响应效果,从而选择适合的治疗措施,实施早期干预,改善患者的治疗效果。本文首先介绍了常用的机器学习方法,在此基础上分别从评估生存情况和预测治疗效果这两方面展开,详细分析了机器学习在乳腺癌患者生存预测及预后领域中的应用,以期为乳腺癌患者提供精准医疗治疗策略,提高治疗效果和生存质量。
章子怡, 王棨临, 张俊有, 段迎迎, 刘家欣, 刘赵硕, 李春燕. 多组学数据驱动的机器学习模型在乳腺癌生存及治疗响应预测中的应用[J]. 遗传, 2024, 46(10): 820-832.
Ziyi Zhang, Qilin Wang, Junyou Zhang, Yingying Duan, Jiaxin Liu, Zhaoshuo Liu, Chunyan Li. Machine learning applications in breast cancer survival and therapeutic outcome prediction based on multi-omic analysis[J]. Hereditas(Beijing), 2024, 46(10): 820-832.
[1] | Han BF, Zheng RS, Zeng HM, Wang SM, Sun KX, Chen R, Li L, Wei WQ, He J. Cancer incidence and mortality in China, 2022. J Natl Cancer Cent, 2024, 4(1): 47-53. |
[2] |
Hapach LA, Carey SP, Schwager SC, Taufalele PV, Wang WJ, Mosier JA, Ortiz-Otero N, McArdle TJ, Goldblatt ZE, Lampi MC, Bordeleau F, Marshall JR, Richardson IM, Li JH, King MR, Reinhart-King CA. Phenotypic heterogeneity and metastasis of breast cancer cells. Cancer Res, 2021, 81(13): 3649-3663.
doi: 10.1158/0008-5472.CAN-20-1799 pmid: 33975882 |
[3] |
Yin L, Duan JJ, Bian XW, Yu SC. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res, 2020, 22(1): 61.
doi: 10.1186/s13058-020-01296-5 pmid: 32517735 |
[4] |
Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res, 2017, 50(1): 33.
doi: 10.1186/s40659-017-0140-9 pmid: 28969709 |
[5] | Kundu M, Butti R, Panda VK, Malhotra D, Das S, Mitra T, Kapse P, Gosavi SW, Kundu GC. Modulation of the tumor microenvironment and mechanism of immunotherapy- based drug resistance in breast cancer. Mol Cancer, 2024, 23(1): 92. |
[6] | Rakha EA, Green AR. Molecular classification of breast cancer: what the pathologist needs to know. Pathology, 2017, 49(2): 111-119. |
[7] |
Huang SG, Yang J, Shen N, Xu QS, Zhao Q. Artificial intelligence in lung cancer diagnosis and prognosis: Current application and future perspective. Semin Cancer Biol, 2023, 89: 30-37.
doi: 10.1016/j.semcancer.2023.01.006 pmid: 36682439 |
[8] |
Jin X, Zhou YF, Ma D, Zhao S, Lin CJ, Xiao Y, Fu T, Liu CL, Chen YY, Xiao WX, Liu YQ, Chen QW, Yu Y, Shi LM, Shi JX, Huang W, Robertson JFR, Jiang YZ, Shao ZM. Molecular classification of hormone receptor-positive HER2-negative breast cancer. Nat Genet, 2023, 55(10): 1696-1708.
doi: 10.1038/s41588-023-01507-7 pmid: 37770634 |
[9] |
Li RQ, Yan L, Zhang L, Ma HX, Wang HW, Bu P, Xi YF, Lian J. Genomic characterization reveals distinct mutational landscapes and therapeutic implications between different molecular subtypes of triple-negative breast cancer. Sci Rep, 2024, 14(1): 12386.
doi: 10.1038/s41598-024-62991-3 pmid: 38811720 |
[10] |
Spring LM, Fell G, Arfe A, Sharma C, Greenup R, Reynolds KL, Smith BL, Alexander B, Moy B, Isakoff SJ, Parmigiani G, Trippa L, Bardia A. Pathologic complete response after neoadjuvant chemotherapy and impact on breast cancer recurrence and survival: a comprehensive meta-analysis. Clin Cancer Res, 2020, 26(12): 2838-2848.
doi: 10.1158/1078-0432.CCR-19-3492 pmid: 32046998 |
[11] | Rafique R, Islam SMR, Kazi JU. Machine learning in the prediction of cancer therapy. Comput Struct Biotechnol J, 2021, 19: 4003-4017. |
[12] | Osama S, Shaban H, Ali AA. Gene reduction and machine learning algorithms for cancer classification based on microarray gene expression data: A comprehensive review. Expert Syst Appl, 2023, 213: 118946. |
[13] | Yuan TW, Edelmann D, Fan ZW, Alwers E, Kather JN, Brenner H, Hoffmeister M. Machine learning in the identification of prognostic DNA methylation biomarkers among patients with cancer: A systematic review of epigenome-wide studies. Artif Intell Med, 2023, 143: 102589. |
[14] | Lever J, Krzywinski M, Altman N. Logistic regression. Nat Methods, 2016, 13(7): 541-542. |
[15] | Kourou K, Exarchos KP, Papaloukas C, Sakaloglou P, Exarchos T, Fotiadis DI. Applied machine learning in cancer research: A systematic review for patient diagnosis, classification and prognosis. Comput Struct Biotechnol J, 2021, 19: 5546-5555. |
[16] | Audureau E, Soubeyran PL, Martinez-Tapia C, Bellera CA, Bastuji-Garin S, Boudou-Rouquette P, Rainfray M, Chahwakilian A, Grellety T, Hanon O, Mathoulin-Pélissier S, Paillaud E, Canoui-Poitrine F. Using machine learning to predict mortality in older patients with cancer: Decision tree and random forest analyses from the ELCAPA and ONCODAGE prospective cohorts. J Clin Oncol, 2019, 37(15_suppl): 11516. |
[17] | Paul A, Mukherjee DP, Das P, Gangopadhyay A, Chintha AR, Kundu S. Improved random forest for classification. IEEE Trans Image Process, 2018, 27(8): 4012-4024. |
[18] | Zolfaghari B, Mirsadeghi L, Bibak K, Kavousi K. Cancer prognosis and diagnosis methods based on ensemble learning. ACM Comput Surv, 2023, 55(12): 1-34. |
[19] | Shahraki A, Abbasi M, Haugen Ø. Boosting algorithms for network intrusion detection: a comparative evaluation of real AdaBoost, gentle AdaBoost and modest AdaBoost. Eng Appl Artif Intell, 2020, 94: 103770. |
[20] | Tseng CJ, Lu CJ, Chang CC, Chen GD, Cheewakriangkrai C. Integration of data mining classification techniques and ensemble learning to identify risk factors and diagnose ovarian cancer recurrence. Artif Intell Med, 2017, 78: 47-54. |
[21] | Wickramasinghe I, Kalutarage H. Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation. Soft Comput, 2021, 25(3): 2277-2293. |
[22] | Höhn J, Krieghoff-Henning E, Jutzi TB, von Kalle C, Utikal JS, Meier F, Gellrich FF, Hobelsberger S, Hauschild A, Schlager JG, French L, Heinzerling L, Schlaak M, Ghoreschi K, Hilke FJ, Poch G, Kutzner H, Heppt MV, Haferkamp S, Sondermann W, Schadendorf D, Schilling B, Goebeler M, Hekler A, Fröhling S, Lipka DB, Kather JN, Krahl D, Ferrara G, Haggenmüller S, Brinker TJ. Combining CNN-based histologic whole slide image analysis and patient data to improve skin cancer classification. Eur J Cancer, 2021, 149: 94-101. |
[23] | Zhang Y, Zhang C, Li KJ, Deng JL, Liu H, Lai GC, Xie B, Zhong XN. Identification of molecular subtypes and prognostic characteristics of adrenocortical carcinoma based on unsupervised clustering. Int J Mol Sci, 2023, 24(20): 15465. |
[24] | Ayesha S, Hanif MK, Talib R. Overview and comparative study of dimensionality reduction techniques for high dimensional data. Inf Fusion, 2020, 59: 44-58. |
[25] |
Nidheesh N, Abdul Nazeer KA, Ameer PM. An enhanced deterministic K-Means clustering algorithm for cancer subtype prediction from gene expression data. Comput Biol Med, 2017, 91: 213-221.
doi: S0010-4825(17)30340-2 pmid: 29100115 |
[26] |
Wei W, Liang JY, Guo XY, Song P, Sun YJ. Hierarchical division clustering framework for categorical data. Neurocomputing, 2019, 341: 118-134.
doi: 10.1016/j.neucom.2019.02.043 |
[27] | Levada ALM. Parametric PCA for unsupervised metric learning. Pattern Recognit Lett, 2020, 135: 425-430. |
[28] | Haberl D, Spielvogel CP, Jiang ZW, Orlhac F, Iommi D, Carrió I, Buvat I, Haug AR, Papp L. Multicenter PET image harmonization using generative adversarial networks. Eur J Nucl Med Mol Imaging, 2024, 51(9): 2532-2546. |
[29] | Saghand PG, Naqa IE, Tan AC, Xie MY, Dai DH, Chen JL, Ratan A, McCarter M, Carpten JD, Shah H, Ikeguchi A, Tripathi A, Puzanov I, Arnold SM, Churchman ML, Hwu P, Conejo-Garcia J, Dalton WS, Weiner GJ, Tarhini AA. A deep learning approach utilizing clinical and molecular data for identifying prognostic biomarkers in patients treated with immune checkpoint inhibitors: An ORIEN pan-cancer study. J Clin Oncol, 2022, 40(16_suppl): 2619. |
[30] | Liao WJ, He JL, Luo XD, Wu MW, Shen YY, Li CR, Xiao JH, Wang GT, Chen NY. Automatic delineation of gross tumor volume based on magnetic resonance imaging by performing a novel semisupervised learning framework in nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys, 2022, 113(4): 893-902. |
[31] | Guha S. LASSO based analysis for prediction of prognostic signature genes associated with breast cancer. bioRxiv, 2024: 587421. |
[32] |
He JJ, Fu FM, Wang W, Xi GQ, Guo WH, Zheng LQ, Ren WJ, Qiu LD, Huang XX, Wang C, Li LH, Kang DY, Chen JX. Prognostic value of tumour-infiltrating lymphocytes based on the evaluation of frequency in patients with oestrogen receptor-positive breast cancer. Eur J Cancer, 2021, 154: 217-226.
doi: 10.1016/j.ejca.2021.06.011 pmid: 34293665 |
[33] |
Joo S, Ko ES, Kwon S, Jeon E, Jung H, Kim JY, Chung MJ, Im YH. Multimodal deep learning models for the prediction of pathologic response to neoadjuvant chemotherapy in breast cancer. Sci Rep, 2021, 11(1): 18800.
doi: 10.1038/s41598-021-98408-8 pmid: 34552163 |
[34] |
Tong L, Wu H, Wang MD. Integrating multi-omics data by learning modality invariant representations for improved prediction of overall survival of cancer. Methods, 2021, 189: 74-85.
doi: 10.1016/j.ymeth.2020.07.008 pmid: 32763377 |
[35] | Palmal S, Arya N, Saha S, Tripathy S. Integrative prognostic modeling for breast cancer: Unveiling optimal multimodal combinations using graph convolutional networks and calibrated random forest. Appl Soft Comput, 2024, 154: 111379. |
[36] |
Arya N, Saha S, Mathur A, Saha S. Improving the robustness and stability of a machine learning model for breast cancer prognosis through the use of multi-modal classifiers. Sci Rep, 2023, 13(1): 4079.
doi: 10.1038/s41598-023-30143-8 pmid: 36906618 |
[37] | Jiang YZ, Ma D, Jin X, Xiao Y, Yu Y, Shi JX, Zhou YF, Fu T, Lin CJ, Dai LJ, Liu CL, Zhao S, Su GH, Hou WW, Liu YQ, Chen QW, Yang JC, Zhang NX, Zhang WJ, Liu W, Ge WG, Yang WT, You C, Gu YJ, Kaklamani V, Bertucci F, Verschraegen C, Daemen A, Shah NM, Wang T, Guo TN, Shi LM, Perou CM, Zheng YT, Huang W, Shao ZM. Integrated multiomic profiling of breast cancer in the Chinese population reveals patient stratification and therapeutic vulnerabilities. Nat Cancer, 2024, 5(4): 673-690. |
[38] | Li X, Yang LF, Jiao X. Deep learning-based multiomics integration model for predicting axillary lymph node metastasis in breast cancer. Future Oncol, 2023, 19(20): 1429-1438. |
[39] | Zhang LY, Pan J, Wang Z, Yang CH, Chen WZ, Jiang JX, Zheng ZY, Jia F, Zhang Y, Jiang JH, Su K, Ren GH, Huang J. Multi-omics profiling suggesting intratumoral mast cells as predictive index of breast cancer lung metastasis. Front Oncol, 2022, 11: 788778. |
[40] | Masood S. Neoadjuvant chemotherapy in breast cancers. Womens Health (Lond), 2016, 12(5): 480-491. |
[41] | Wheeler SB, Rotter J, Gogate A, Reeder-Hayes KE, Drier SW, Ekwueme DU, Fairley TL, Rocque GB, Trogdon JG. Cost-effectiveness of pharmacologic treatment options for women with endocrine-refractory or triple-negative metastatic breast cancer. J Clin Oncol, 2023, 41(1): 32-42. |
[42] |
Hurvitz SA, Martin M, Symmans WF, Jung KH, Huang CS, Thompson AM, Harbeck N, Valero V, Stroyakovskiy D, Wildiers H, Campone M, Boileau JF, Beckmann MW, Afenjar K, Fresco R, Helms HJ, Xu J, Lin YG, Sparano J, Slamon D. Neoadjuvant trastuzumab, pertuzumab, and chemotherapy versus trastuzumab emtansine plus pertuzumab in patients with HER2-positive breast cancer (KRISTINE): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol, 2018, 19(1): 115-126.
doi: S1470-2045(17)30716-7 pmid: 29175149 |
[43] | Thota R, Christensen B, Fulde G, Lewis MA, Haslem DS, Rhodes TD, Nadauld L, Barker T. Characterization of the tumor mutation burden in hepatobiliary tumors. J Clin Oncol, 2019, 37(4_suppl): 295. |
[44] | Laas E, Labrosse J, Hamy AS, Benchimol G, de Croze D, Feron JG, Coussy F, Balezeau T, Guerin J, Lae M, Pierga JY, Reyal F. Determination of breast cancer prognosis after neoadjuvant chemotherapy: comparison of Residual Cancer Burden (RCB) and Neo-Bioscore. Br J Cancer, 2021, 124(8): 1421-1427. |
[45] |
Walia A, Tuia J, Prasad V. Progression-free survival, disease-free survival and other composite end points in oncology: improved reporting is needed. Nat Rev Clin Oncol, 2023, 20(12): 885-895.
doi: 10.1038/s41571-023-00823-5 pmid: 37828154 |
[46] | Wang H, Mao XY. Evaluation of the efficacy of neoadjuvant chemotherapy for breast cancer. Drug Des Devel Ther, 2020, 14: 2423-2433. |
[47] |
Liu ZY, Li ZL, Qu JR, Zhang RZ, Zhou XZ, Li LF, Sun K, Tang ZC, Jiang H, Li HL, Xiong QQ, Ding YY, Zhao XM, Wang K, Liu ZY, Tian J. Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: a multicenter study. Clin Cancer Res, 2019, 25(12): 3538-3547.
doi: 10.1158/1078-0432.CCR-18-3190 pmid: 30842125 |
[48] | Park S, Yi G. Development of gene expression-based random forest model for predicting neoadjuvant chemotherapy response in triple-negative breast cancer. Cancers (Basel), 2022, 14(4): 881. |
[49] | Sammut SJ, Crispin-Ortuzar M, Chin SF, Provenzano E, Bardwell HA, Ma WX, Cope W, Dariush A, Dawson SJ, Abraham JE, Dunn J, Hiller L, Thomas J, Cameron DA, Bartlett JMS, Hayward L, Pharoah PD, Markowetz F, Rueda OM, Earl HM, Caldas C. Multi-omic machine learning predictor of breast cancer therapy response. Nature, 2022, 601(7894): 623-629. |
[50] |
Malik V, Kalakoti Y, Sundar D. Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer. BMC Genomics, 2021, 22(1): 214.
doi: 10.1186/s12864-021-07524-2 pmid: 33761889 |
[51] | Anderson NM, Simon MC. The tumor microenvironment. Curr Biol, 2020, 30(16): R921-R925. |
[52] |
Mittal S, Brown NJ, Holen I. The breast tumor microenvironment: role in cancer development, progression and response to therapy. Expert Rev Mol Diagn, 2018, 18(3): 227-243.
doi: 10.1080/14737159.2018.1439382 pmid: 29424261 |
[53] | Lucena-Sánchez E, Hicke FJ, Clara-Trujillo S, García- Fernández A, Martínez-Máñez R. Nanoparticle-mediated tumor microenvironment remodeling favors the communication with the immune cells for tumor killing. Adv Ther, 2024, 7(5): 2400004. |
[54] | Keenan TE, Tolaney SM. Role of immunotherapy in triple-negative breast cancer. J Natl Compr Canc Netw, 2020, 18(4): 479-489. |
[55] |
Shiravand Y, Khodadadi F, Kashani SMA, Hosseini-Fard SR, Hosseini S, Sadeghirad H, Ladwa R, O'Byrne K, Kulasinghe A. Immune checkpoint inhibitors in cancer therapy. Curr Oncol, 2022, 29(5): 3044-3060.
doi: 10.3390/curroncol29050247 pmid: 35621637 |
[56] | Ambrosini M, Rousseau B, Manca P, Artz O, Marabelle A, André T, Maddalena G, Mazzoli G, Intini R, Cohen R, Cercek A, Segal NH, Saltz L, Varghese AM, Yaeger R, Nusrat M, Goldberg Z, Ku GY, El Dika I, Margalit O, Grinshpun A, Kasi PM, Schilsky R, Lutfi A, Shacham- Shmueli E, Khan Afghan M, Weiss L, Westphalen CB, Conca V, Decker B, Randon G, Elez E, Fakih M, Schrock AB, Cremolini C, Jayachandran P, Overman MJ, Lonardi S, Pietrantonio F. Immune checkpoint inhibitors for POLE or POLD1 proofreading-deficient metastatic colorectal cancer. Ann Oncol, 2024, 35(7): 643-655. |
[57] |
Li YW, Wu X, Fang DY, Luo Y. Informing immunotherapy with multi-omics driven machine learning. NPJ Digit Med, 2024, 7(1): 67.
doi: 10.1038/s41746-024-01043-6 pmid: 38486092 |
[58] |
Chen IX, Newcomer K, Pauken KE, Juneja VR, Naxerova K, Wu MW, Pinter M, Sen DR, Singer M, Sharpe AH, Jain RK. A bilateral tumor model identifies transcriptional programs associated with patient response to immune checkpoint blockade. Proc Natl Acad Sci USA, 2020, 117(38): 23684-23694.
doi: 10.1073/pnas.2002806117 pmid: 32907939 |
[59] | Gou QH, Liu ZJ, Xie YX, Deng YL, Ma J, Li JP, Zheng H. Systematic evaluation of tumor microenvironment and construction of a machine learning model to predict prognosis and immunotherapy efficacy in triple-negative breast cancer based on data mining and sequencing validation. Front Pharmacol, 2022, 13: 995555. |
[60] |
Xiao Y, Ma D, Zhao S, Suo C, Shi JX, Xue MZ, Ruan M, Wang H, Zhao JJ, Li Q, Wang P, Shi LM, Yang WT, Huang W, Hu X, Yu KD, Huang SL, Bertucci F, Jiang YZ, Shao ZM, AME Breast Cancer Collaborative Group. Multi-omics profiling reveals distinct microenvironment characterization and suggests immune escape mechanisms of triple-negative breast cancer. Clin Cancer Res, 2019, 25(16): 5002-5014.
doi: 10.1158/1078-0432.CCR-18-3524 pmid: 30837276 |
[61] |
Hu QT, Hong Y, Qi P, Lu GQ, Mai XY, Xu S, He XY, Guo Y, Gao LL, Jing ZY, Wang JW, Cai T, Zhang Y. Atlas of breast cancer infiltrated B-lymphocytes revealed by paired single-cell RNA-sequencing and antigen receptor profiling. Nat Commun, 2021, 12(1): 2186.
doi: 10.1038/s41467-021-22300-2 pmid: 33846305 |
[62] |
Wu SZ, Al-Eryani G, Roden DL, Junankar S, Harvey K, Andersson A, Thennavan A, Wang CF, Torpy JR, Bartonicek N, Wang TP, Larsson L, Kaczorowski D, Weisenfeld NI, Uytingco CR, Chew JG, Bent ZW, Chan CL, Gnanasambandapillai V, Dutertre CA, Gluch L, Hui MN, Beith J, Parker A, Robbins E, Segara D, Cooper C, Mak C, Chan B, Warrier S, Ginhoux F, Millar E, Powell JE, Williams SR, Liu XS, O’Toole S, Lim E, Lundeberg J, Perou CM, Swarbrick A. A single-cell and spatially resolved atlas of human breast cancers. Nat Genet, 2021, 53(9): 1334-1347.
doi: 10.1038/s41588-021-00911-1 pmid: 34493872 |
[63] | Jiménez-Santos MJ, García-Martín S, Rubio-Fernández M, Gómez-López G, Al-Shahrour F. Spatial transcriptomics in breast cancer reveals tumour microenvironment-driven drug responses and clonal therapeutic heterogeneity. bioRxiv, 2024, doi: 10.1101/2024.02.18.580660. |
[64] | Hua Z, White J, Zhou JJ. Cancer stem cells in TNBC. Semin Cancer Biol, 2022, 82: 26-34. |
[65] | Alaa AM, Gurdasani D, Harris AL, Rashbass J, van der Schaar M. Machine learning to guide the use of adjuvant therapies for breast cancer. Nat Mach Intell, 2021, 3(8): 716-726. |
[1] | 梁卉, 王雪, 司敬方, 张毅. 利用基因组标记和机器学习算法对中国牛品种的分类准确性研究[J]. 遗传, 2024, 46(7): 530-539. |
[2] | 郑慧怡, 吴华煊, 杜志强. 肠道宏基因组图像增强和深度学习改善代谢性疾病分类预测精度[J]. 遗传, 2024, 46(10): 886-896. |
[3] | 万羽鑫, 朱欣雨, 赵宇, 孙娜, 江天彤妃, 徐娟. 计算解析异常代谢对乳腺癌微环境重塑的调控机制[J]. 遗传, 2024, 46(10): 871-885. |
[4] | 马春辉, 胡海旭, 张丽娟, 刘毅, 刘天懿. 用于循环肿瘤细胞定量分析的CK19数字PCR检测方法的建立及性能验证[J]. 遗传, 2023, 45(3): 250-260. |
[5] | 常栋, 刘享享, 刘睿, 孙建伟. FSCN1在乳腺癌发生发展中的作用及其调控机制[J]. 遗传, 2023, 45(2): 115-127. |
[6] | 陈栋, 王书杰, 赵真坚, 姬祥, 申琦, 余杨, 崔晟頔, 王俊戈, 陈子旸, 王金勇, 郭宗义, 吴平先, 唐国庆. 基于机器学习的猪生长性状基因组预测[J]. 遗传, 2023, 45(10): 922-932. |
[7] | 孔永强, 刘金凯, 顾佳琪, 徐景怡, 郑雨诺, 魏以梁, 伍少远. 南-北方汉族人、韩国人和日本人遗传划分机器学习模型优化方案[J]. 遗传, 2022, 44(11): 1028-1043. |
[8] | 胡雅丽, 戴睿, 刘永鑫, 张婧赢, 胡斌, 储成才, 袁怀波, 白洋. 水稻典型品种日本晴和IR24根系微生物组的解析[J]. 遗传, 2020, 42(5): 506-518. |
[9] | 张强, 顾明亮. 单细胞测序技术及其在乳腺癌研究中的应用[J]. 遗传, 2020, 42(3): 250-268. |
[10] | 王昕源, 张雨, 杨楠, 程禾, 孙玉洁. DNMT3a通过提升基因内部甲基化介导紫杉醇诱导的LINE-1异常表达[J]. 遗传, 2020, 42(1): 100-111. |
[11] | 禹奇超,宋彬,邹轩轩,王岭,刘德权,李波,马昆. 乳腺癌癌旁组织特异性表达基因分析[J]. 遗传, 2019, 41(7): 625-633. |
[12] | 余同露,蔡栋梁,朱根凤,叶晓娟,闵太善,陈红岩,卢大儒,陈浩明. CSN4基因干扰对乳腺癌MDA-MB-231细胞增殖和凋亡的影响[J]. 遗传, 2019, 41(4): 318-326. |
[13] | 赵学彤, 杨亚东, 渠鸿竹, 方向东. 组学时代下机器学习方法在临床决策支持中的应用[J]. 遗传, 2018, 40(9): 693-703. |
[14] | 张桂珊, 杨勇, 张灵敏, 戴宪华. 机器学习方法在CRISPR/Cas9系统中的应用[J]. 遗传, 2018, 40(9): 704-723. |
[15] | 彭哲也,唐紫珺,谢民主. 机器学习方法在基因交互作用探测中的研究进展[J]. 遗传, 2018, 40(3): 218-226. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: