遗传 ›› 2025, Vol. 47 ›› Issue (3): 289-299.doi: 10.16288/j.yczz.24-334
郑琪1(), 赵李2, 李滨1, 李宏伟1, 吉万全3, 张学勇2(
)
收稿日期:
2024-11-21
修回日期:
2025-01-01
出版日期:
2025-03-20
发布日期:
2025-01-02
通讯作者:
张学勇,博士,研究员,研究方向:小麦基因组学与育种。E-mail: zhangxueyong@caas.cn作者简介:
郑琪,博士,研究员,研究方向:小麦染色体工程与育种。E-mail: qzheng@genetics.ac.cn
基金资助:
Qi Zheng1(), Li Zhao2, Bin Li1, Hongwei Li1, Wanquan Ji3, Xueyong Zhang2(
)
Received:
2024-11-21
Revised:
2025-01-01
Published:
2025-03-20
Online:
2025-01-02
Supported by:
摘要:
小麦是我国仅次于水稻的口粮作物,在保障国家粮食安全中占有重要地位。普通小麦(Triticum aestivum)是异源六倍体,拥有众多野生、半野生近缘植物,为其遗传改良提供了丰富的基因资源。我国小麦远缘杂交与染色体工程育种工作始于20世纪50年代,历经30多年的学习、探索和实践,于80年代形成了比较完善的小麦染色体工程理论和技术体系,后经外源染色体片段分子鉴定技术的不断改良,特别是在国家项目持续支持下,我国学者近些年完成了多个外源抗病基因的克隆和机理解析,极大地提升了我国在这一领域的研究水平和国际影响。以李振声院士为代表的老一辈科学家为我国小麦远缘杂交与染色体工程育种的建立、发展和壮大做出了杰出贡献。李振声院士也因其在该领域的突出贡献于2024年国庆前夕被授予“共和国勋章”。本文以我国小麦远缘杂交和染色体工程育种发展的历史为主线,概括总结了老一辈科学家的贡献与成就,并对最近5年的突出进展进行了简要梳理,以致敬先辈、激励来者,为种质资源的创新、外源基因的转移、克隆及利用继续努力工作。
郑琪, 赵李, 李滨, 李宏伟, 吉万全, 张学勇. 中国小麦远缘杂交与染色体工程育种的理论与实践[J]. 遗传, 2025, 47(3): 289-299.
Qi Zheng, Li Zhao, Bin Li, Hongwei Li, Wanquan Ji, Xueyong Zhang. Wheat wide hybridization and chromosome engineering breeding in China[J]. Hereditas(Beijing), 2025, 47(3): 289-299.
[1] | Gill BS. A century of cytogenetic and genome analysis:impact on wheat crop improvement. In Reynolds MP. and Braun HJ eds. Wheat Improvement: Wheat Studies- Retrospect and Prospects. Cham: Springer International Publishing, 2022, 277-298. |
[2] | Okamoto M. Asynaptic effect of chromosome V. Wheat Inf Serv, 1957, 5: 6. |
[3] | Riley R, Chapman V. Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature, 1958, 182: 713-715. |
[4] |
Friebe B, Larter EN. Identification of a complete set of isogenic wheat/rye D-genome substitution lines by means of Giemsa C-banding. Theor Appl Genet, 1988, 76(3): 473-479.
doi: 10.1007/BF00265353 pmid: 24232217 |
[5] |
Jiang JM, Gill BS. Sequential chromosome banding and in situ hybridization analysis. Genome, 1993, 36(4): 792-795.
doi: 10.1139/g93-104 pmid: 18470025 |
[6] |
Endo TR. Induction of chromosomal structural changes by a chromosome of Aegilops cylindrica L. in common wheat. J Hered, 1988, 79(5): 366-370.
doi: 10.1093/oxfordjournals.jhered.a110529 pmid: 31581766 |
[7] |
Mukai Y, Nakahara Y, Yamamoto M. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome, 1993, 36(3): 489-494.
doi: 10.1139/g93-067 pmid: 18470003 |
[8] | Schwarzacher T, Heslop-Harrison P. Practical in situ hybridization. Oxford: BIOS Scientific Publishers, 2000. |
[9] | Sun SC. The approach and methods of breeding new varieties and new species from Agrotriticum hybrids. Acta Agron Sin, 1981, 7(1): 51-58. |
孙善澄. 小偃麦新品种与中间类型的选育途径、程序和方法. 作物学报, 1981, 7(1): 51-58. | |
[10] | Xin ZY, Xu HJ, Chen X, Lin ZS, Zhou GH, Qian YW, Cheng ZM, Larkin PJ, Banks PM, Appels R, Clarke BC, Brettell RIS. Development of common wheat germplasm resistant to barley yellow dwarf virus by biotechnology. Sci China (Ser B), 1991, 34: 1055-1062. |
[11] |
Zhang XY, Koul A, Petroski R, Ouellet T, Fedak G, Dong YS, Wang RR. Molecular verification and characterization of BYDV-resistant germ plasms derived from hybrids of wheat with Thinopyrum ponticum and Th. intermedium. Theor Appl Genet, 1996, 93(7): 1033-1039.
doi: 10.1007/BF00230121 pmid: 24162477 |
[12] | He MY, Xu ZY, Zhou MQ, Zhang H, Chen DW, Piao ZS, Hao S. The establishment of two sets of alien addition lines of wheatwheatgrass. Sci China (Ser B), 1989, 32(6): 695-705. |
[13] | Zhang ZY, Xin ZY, Chen X, Qian YT, Lin ZS, Xu HJ, Ma YZ. Molecular cytogenetic characterization of a new wheat line YW443 with resistance to barley yellow dwarf virus. Acta Genet Sin, 2000, 27(7): 614-620. |
张增艳, 辛志勇, 陈孝, 钱幼亭, 林志珊, 徐惠君, 马有志. 抗黄矮病小麦新品系YW443的分子细胞遗传学鉴定. 遗传学报, 2000, 27(7): 614-620. | |
[14] | Xie H, Chen X, Zhang ZY, Xin ZY, Lin ZS, Du LP, Ma YZ, Xu HJ. Breeding and cytological and molecular identification of a new wheat line YW243 with BYDV resistance. Acta Agron Sin, 2000, 25(6): 687-691. |
谢皓, 陈孝, 张增艳, 辛志勇, 林志珊, 杜丽璞, 马有志, 徐惠君. 抗黄矮病小麦新品系YW243的选育和细胞分子生物学鉴定. 作物学报, 2000, 26(6): 687-691. | |
[15] | Chen PD, Zhou B, Qi LL, Liu DJ. Identification of wheat- Haynaldia villosa amphiploid, addition, substitution and translocation lines by in situ hybridization using biotin- labelled genomic DNA as a probe. Acta Genet Sin, 1995, 22(5): 380-386. |
陈佩度, 周波, 齐莉莉, 刘大钧. 用分子原位杂交(GISH)鉴定小麦-簇毛麦双倍体、附加系、代换系和易位系. 遗传学报, 1995, 22(5): 380-386. | |
[16] | Liu DJ, Qi LL, Chen PD, Zhou B, Zhang SZ. Precise identification of alien chromosome segment introduced in wheat and the stability of its resistance gene. Acta Genet Sin, 1996, 23(1): 18-23. |
刘大钧, 齐莉莉, 陈佩度, 周波, 张守中. 导入小麦的外源染色体片段的准确鉴定及外源抗性基因的稳定性分析. 遗传学报, 1996, 23(1): 18-23. | |
[17] | Li LH, Dong YC. Production and cytogenetic study of intergeneric hybrids between Triticum aestivum and Agropyron desertorum. Sci China (Ser B), 1991, 4: 421-428. |
[18] | Li LH, Li XQ, Li P, Dong YS, Zhao GS. Establishment of wheat-Agropyron cristatum alien addition lines I Cytology of F3, F2BC1, BC4, and BC3F1 progenies. Acta Genet Sin, 1997, 24(2): 154-159. |
李立会, 李秀全, 李培, 董玉琛, 赵桂慎. 小麦-冰草异源附加系的创建IF3、F2BC1、BC4和BC3F1世代的细胞学. 遗传学报, 1997, 24(2): 154-159. | |
[19] | Li LH, Yang XM, Zhou RH, Li XQ, Dong YS, Zhao H. Establishment of wheat-Agropyron cristatum alien addition lines II. Identification of alien chromosomes and analysis of development approaches. Acta Genet Sin, 1998, 25(6): 538-544. |
李立会, 杨欣明, 周荣华, 李秀全, 董玉琛, 赵华. 小麦-冰草异源附加系的创建Ⅱ.异源染色质的检测与培育途径分析. 遗传学报, 1998, 25(6): 538-544. | |
[20] | Chen SY, Zhang AJ, Fu J. The hybridization between Triticum aestivum and Psathyrostachys huashanica. Acta Genet Sin. 1991, 18(6): 508-512. |
陈漱阳, 张安静, 傅杰. 普通小麦与华山新麦草的杂交. 遗传学报, 1991, 18(6): 508-512. | |
[21] | Fu J, Wang MN, Zhao JX, Chen SY, Hou WS, Yang QH. Studies on cytogenetics and utilization of wheat- Psathyrostachys huashanica medium material H8911 with resistance to wheat take-all fungus. Acta Bot Boreali- Occident Sin, 2003, 23(12): 2157-2162. |
傅杰, 王美南, 赵继新, 陈漱阳, 侯文胜, 杨群惠. 抗全蚀病小麦-华山新麦草中间材料H8911的细胞遗传学研究与利用. 西北植物学报, 2003, 23(12): 2157-2162. | |
[22] | Deng X. Molecular and cytogenetic studies on derivatives of wheat-Psathyrostachys huashanica [Dissertation]. Northwest A&F University, 2013. |
邓欣. 小麦-华山新麦草衍生后代的分子细胞遗传学研究[学位论文]. 西北农林科技大学, 2013. | |
[23] | Han J. Molecular cytogenetic identification of the wheat—Psathyrostachys huashanica derivative lines and mapping of powdery mildew resistance genes [Dissertation]. Northwest A&F University, 2021. |
韩静. 小麦-华山新麦草衍生后代的分子细胞遗传学鉴定及白粉病抗性基因定位[学位论文]. 西北农林科技大学, 2021. | |
[24] | Geng Q, Zhang LL, Wang XM, Yang QH, Liu SH, Chen XH, Wu J. Effect of different Psathyrostachys huashanica Keng Ns chromosome addition on wheat salt tolerance and physiological mechanisms analysis. J Triticeae Crops, 2023, 43(9): 1155-1164. |
耿强, 张亮亮, 王亮明, 杨群慧, 刘淑会, 陈新宏, 武军. 附加华山新麦草不同Ns染色体对小麦耐盐性的影响及其生理机制分析. 麦类作物学报, 2023, 43(9): 1155-1164. | |
[25] | Zhu JF, Chen CH, Zhang RQ, Zhang H, Wang CY, Wang YJ, Liu XL, Tian ZR, Zhao JX, Ji WQ. Disease-resistant and high-yielding new wheat varieties-Xinong 501. J Triticeae Crops, 2020, 40 (7): 768. |
朱建峰, 陈春环, 张荣琦, 张宏, 王长有, 王亚娟, 刘新伦, 田增荣, 赵继新, 吉万全. 抗病高产小麦新品种—西农501. 麦类作物学报, 2020, 40(7): 768. | |
[26] | Li QQ, Li AF, Bao WY, Li SS, Li XB. Creation of a new winter wheat (Triticum aestivum L.) germplasm Aimengniu and progress in research and application. Proceedings of the international symposium on wheat genetics and breeding, 2001: 465-470. |
李晴祺, 李安飞, 包文翔, 李斯深, 李宪彬. 冬小麦新种质“矮孟牛”的创造及研究利用的进展. 小麦遗传育种国际学术讨论会论文集, 2001: 465-470. | |
[27] |
Li YJ, Xu H, Yu SN, Tang JW, Li QY, Gao Y, Zheng JZ, Dong CH, Yuan YH, Zheng TC, Yin GH. Genetic analysis of elite stripe rust resistance genes of founder parent Zhou 8425B in its derived varieties. Acta Agron Sin, 2024, 50(1): 16-31.
doi: 10.3724/SP.J.1006.2024.31013 |
李俣佳, 许豪, 于士男, 唐建卫, 李巧云, 高艳, 郑继周, 董纯豪, 袁雨豪, 郑天存, 殷贵鸿. 小麦骨干亲本周8425B抗条锈病优异基因在其衍生品种中的遗传解析. 作物学报, 2024, 50(1): 16-31.
doi: 10.3724/SP.J.1006.2024.31013 |
|
[28] |
Ren TH, Jiang Q, Sun ZX, Zhao LQ, Peng WH, Ren ZL, Tan FQ, Luo PG, Li Z. Development and molecular cytogenetic characterization of novel primary wheat-rye 1RS.1BL translocation lines from multiple rye sources with resistance to stripe rust. Plant Dis, 2022, 106(8): 2191-2200.
doi: 10.1094/PDIS-11-21-2605-RE pmid: 35077221 |
[29] | Jiao CZ, Xie XM, Hao CY, Chen LY, Xie YX, Garg V, Zhao L, Wang ZH, Zhang YQ, Li T, Fu JJ, Chitikineni A, Hou J, Liu HX, Dwivedi G, Liu X, Jia JZ, Miao L, Wang XE, Appels R, Varshney RK, Guo WL, Zhang XY. Pangenome bridges wheat structural variations with habitat and breeding. Nature, 2024, doi: 10.1038/s41586-024-08277-0. |
[30] | Xu SJ, Dong YS. Cytogenetic study on the formation of amphiploids in the F1 hybrids of Triticum carthlicum Nevski var. darginicum and Aegilops tauschii Cosson. Acta Agron Sin, 1989, 15(3): 251-259. |
许树军, 董玉琛. 波斯小麦×节节麦杂种F1直接形成双二倍体的细胞遗传学研究. 作物学报, 1989, 15(3): 251-259. | |
[31] | Kong LR, Dong YS. Studies on the cytogenetic of progenies between Triticum aestivum L. and amphidiploid from Triticum durum-Ae. tauschii. Acta Agron Sin, 1997, 23(4): 505-508. |
孔令让, 董玉琛. 普通小麦与四倍体小麦-粗山羊草双二倍体杂种后代的细胞遗传学研究. 作物学报, 1997, 23(4): 505-508. | |
[32] |
Li J, Wan HS, Yang WY. Synthetic hexaploid wheat enhances variation and adaptive evolution of bread wheat in breeding processes. J Syst Evol, 2014, 52(6): 735-742.
doi: 10.1111/jse.12110 |
[33] | Liu ZH, Wang HS, Yang F, Wang Q, Tang H, Yang N, Yang WY, Li J. Identification of important genomic regions for foundational parent Chuanmai 42 of southwest wheat growing zone and their genetic contribution. Southwest China J of Agri Sci, 2024, 37(5): 897-912. |
刘泽厚, 万洪深, 杨凡, 王琴, 唐豪, 杨宁, 杨武云, 李俊. 西南麦区骨干亲本川麦42重要基因组区段的确定及其对衍生品种的遗传贡献. 西南农业学报, 2024, 37(5): 897-912. | |
[34] | Chen PD, Gill BS. The origin of chromosome 4A and genomes B and G of tetraploid wheats. Acta Agron Sin, 1984, 10(3): 146-153. |
陈佩度, B.S. Gill. 四倍体小麦染色体4A和B、G染色体组的起源. 作物学报, 1984, 10(3): 146-153. | |
[35] |
Zhang XY, Dong YS, Wang RRC. Characterization of genomes and chromosomes in partial amphiploids of the hybrid Triticum aestivum × Thinopyrum ponticum by in situ hybridization, isozyme analysis, and RAPD. Genome, 1996, 39(6): 1062-1071.
doi: 10.1139/g96-133 pmid: 18469955 |
[36] |
Liu Z, Yue W, Li DY, Wang RRC, Kong XY, Lu K, Wang GX, Dong YS, Jin WW, Zhang XY. Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma, 2008, 117(5): 445-456.
doi: 10.1007/s00412-008-0161-9 pmid: 18496705 |
[37] | Li BC, Choulet F, Heng YF, Hao WW, Paux E, Liu Z, Yue W, Jin WW, Feuillet C, Zhang XY. Wheat centromeric retrotransposons: the new ones take a major role in centromeric structure. Plant J, 2013, 73(6): 952-965. |
[38] | Zhao J, Hao WW, Tang CG, Yao H, Li BC, Zheng Q, Li ZS, Zhang XY. Plasticity in Triticeae centromere DNA sequences: a wheat × tall wheatgrass (decaploid) model. Plant J, 2019, 100(2): 314-327. |
[39] | Deng PC, Du X, Wang YZ, Yang XY, Cheng XF, Huang CX, Li TT, Li TD, Chen CH, Zhao JX, Wang CY, Liu XL, Tian ZR, Ji WQ. GenoBaits®WheatplusEE: a targeted capture sequencing panel for quick and accurate identification of wheat-Thinopyrum derivatives. Theor Appl Genet, 2023, 137(2): 36. |
[40] | Yang GT, Boshoff WHP, Li HW, Pretorius ZA, Luo QL, Li B, Li ZS, Zheng Q. Chromosomal composition analysis and molecular marker development for the novel Ug99-resistant wheat-Thinopyrum ponticum translocation line WTT34. Theor Appl Genet, 2021, 134(5): 1587-1599. |
[41] | Han FP, Yuan J, Shi QH, Wang L. Multicolor fluorescence in situ hybridization (MFISH) method for quickly analyzing and identifying alien chromosome of wheat. 2013, Patent Publication Number: CN103205500. |
韩方普, 袁静, 石庆华, 王龙. 一种快速分析和鉴定小麦外源染色体的多色荧光原位杂交方法. 2013, 专利号: CN103205500. | |
[42] | Wang HW, Sun SL, Ge WY, Zhao LF, Hou BQ, Wang K, Lyu ZF, Chen LY, Xu SS, Guo J, Li M, Su PS, Li XF, Wang GP, Bo CY, Fang XJ, Zhuang WW, Cheng XX, Wu JW, Dong LH, Chen WY, Li W, Xiao GL, Zhao JX, Hao YC, Xu Y, Gao Y, Liu WJ, Liu YH, Yin HY, Li JZ, Li X, Zhao Y, Wang XQ, Ni F, Ma X, Li AF, Xu SS, Bai GH, Nevo E, Gao CX, Ohm H, Kong LR. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science, 2020, 368(6493): eaba5435. |
[43] | Li HH, Men WQ, Ma C, Liu QW, Dong ZJ, Tian XB, Wang CL, Liu C, Gill HS, Ma PT, Zhang ZB, Liu B, Zhao Y, Sehgal SK, Liu WX. Wheat powdery mildew resistance gene Pm13 encodes a mixed lineage kinase domain-like protein. Nat Commun, 2024, 15(1): 2449. |
[44] |
Zhao Y, Dong ZJ, Miao JN, Liu QW, Ma C, Tian XB, He JQ, Bi HH, Yao W, Li T, Gill HS, Zhang ZB, Cao AZ, Liu B, Li HH, Sehgal SK, Liu WX. Pm57 from Aegilops searsii encodes a tandem kinase protein and confers wheat powdery mildew resistance. Nat Commun, 2024, 15(1): 4796.
doi: 10.1038/s41467-024-49257-2 pmid: 38839783 |
[45] | Ma C, Tian XB, Dong ZJ, Li HH, Chen XX, Liu WX, Yin GH, Ma SY, Zhang LW, Cao AZ, Liu C, Yan HF, Sehgal SK, Zhang ZB, Liu B, Wang SW, Liu QW, Zhao YS, Zhao Y. An Aegilops longissima NLR protein with integrated CC-BED module mediates resistance to wheat powdery mildew. Nat Commun, 2024, 15(1): 8281. |
[46] | Li MM, Dong LL, Li BB, Wang ZZ, Xie JZ, Qiu D, Li YH, Shi WQ, Yang LJ, Wu QH, Chen YX, Lu P, Guo GH, Zhang HZ, Zhang PP, Zhu KY, Li YW, Zhang Y, Wang RG, Yuan CG, Liu W, Yu DZ, Luo MC, Fahima T, Nevo E, Li HJ, Liu ZY. A CNL protein in wild emmer wheat confers powdery mildew resistance. New Phytol, 2020, 228(3): 1027-1037. |
[47] |
Li MM, Zhang HZ, Xiao HX, Zhu KY, Shi WQ, Zhang D, Wang Y, Yang LJ, Wu QH, Xie JZ, Chen YX, Qiu D, Guo GH, Lu P, Li BB, Dong L, Li WL, Cui XJ, Li LC, Tian XB, Yuan CG, Li YW, Yu DZ, Nevo E, Fahima T, Li HJ, Dong LL, Zhao YS, Liu ZY. A membrane associated tandem kinase from wild emmer wheat confers broad-spectrum resistance to powdery mildew. Nat Commun, 2024, 15(1): 3124.
doi: 10.1038/s41467-024-47497-w pmid: 38600164 |
[48] | Cao AZ, Xing LP, Wang XY, Yang XM, Wang W, Sun YL, Qian C, Ni JL, Chen YP, Liu DJ, Wang XE, Chen PD. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA, 2011, 108(19): 7727-7732. |
[49] | Xing LP, Hu P, Liu JQ, Witek K, Zhou S, Xu JF, Zhou WH, Gao L, Huang ZP, Zhang RQ, Wang XE, Chen PD, Wang HY, Jones JDG, Karafiátová M, Vrána J, Bartoš J, Doležel J, Tian YC, Wu YF, Cao AZ. Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol Plant, 2018, 11(6): 874-878. |
[50] | Liu YQ, Wang HR, Jiang ZM, Wang W, Xu RN, Wang QH, Zhang ZH, Li AF, Liang Y, Ou SJ, Liu XJ, Cao SY, Tong HN, Wang YH, Zhou F, Liao H, Hu B, Chu CC. Genomic basis of geographical adaptation to soil nitrogen in rice. Nature, 2021, 590(7847): 600-605. |
[51] | Dewey DR. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In Gustafson JP eds. Gene Manipulation in Plant Improvement. New York: Plenum Publishing Corporation, 1984, 209-279. |
[52] | Yan J, Yang JL. Biosystematics of Triticeae. Beijing: Agricultural Press, 2011. |
颜济, 杨俊良. 小麦族生物系统学. 北京: 中国农业出版社, 2011. | |
[53] | Yu H, Lin T, Meng XB, Du HL, Zhang JK, Liu GF, Chen MJ, Jing YH, Kou LQ, Li XX, Gao Q, Liang Y, Liu XD, Fan ZL, Liang YT, Cheng ZK, Chen MS, Tian ZX, Wang YH, Chu CC, Zuo JR, Wan JM, Qian Q, Han B, Zuccolo A, Wing RA, Gao CX, Liang CZ, Li JY. A route to de novo domestication of wild allotetraploid rice. Cell, 2021, 184(5): 1156-1170. |
[54] | Liu GS, Li XX. Study on germplasm of Leymus chinensis. Beijing: Science Press, 2011. |
刘公社, 李晓霞. 羊草种质资源研究. 北京: 科学出版社, 2011. |
[1] | 童依平, 滕婉, 凌宏清, 张爱民. 小麦养分高效利用育种新方法的实践与思考[J]. 遗传, 2025, 47(3): 300-307. |
[2] | 杨漫宇, 姚方杰, 杨足君, 杨恩年. 六倍体小黑麦×六倍体小麦杂交后代中染色体遗传与结构变异鉴定[J]. 遗传, 2024, 46(1): 63-77. |
[3] | 赵娜, 亓宝, 董芊里, 王晓丽. 普通小麦相关研究进展在遗传学理论教学中的应用[J]. 遗传, 2020, 42(9): 916-925. |
[4] | 史晓黎,何伊琳,凌宏清. 小麦A基因组测序与进化研究进展[J]. 遗传, 2019, 41(9): 836-844. |
[5] | 郑建敏,罗江陶,万洪深,李式昭,杨漫宇,李俊,杨恩年,蒋云,刘于斌,王相权,蒲宗君. 四川省小麦育成品种系谱分析及发展进程[J]. 遗传, 2019, 41(7): 599-610. |
[6] | 张爱民, 阳文龙, 李欣, 孙家柱. 小麦抗赤霉病研究现状与展望[J]. 遗传, 2018, 40(10): 858-873. |
[7] | 马建辉, 仝豆豆, 张文利, 张黛静, 邵云, 杨云, 姜丽娜. 乌拉尔图小麦NAC转录因子的筛选与分析[J]. 遗传, 2016, 38(3): 243-253. |
[8] | 丁刘军,普明宇,卫波,王献平,范仁春,张相岐. 转录因子基因TuGTγ-3参与乌拉尔图小麦对条锈病的抗性[J]. 遗传, 2016, 38(12): 1090-1101. |
[9] | 李海凤, 刘慧萍, 戴毅, 黄帅, 张军, 高勇, 陈建民. 四倍体小麦背景中长穗偃麦草E染色体传递特征[J]. 遗传, 2016, 38(11): 1020-1029. |
[10] | 李俊, 朱欣果, 万洪深, 王琴, 唐宗祥, 符书兰, 杨足君, 杨漫宇, 杨武云. 1RS-7DS.7DL小麦-黑麦小片段易位系的鉴定[J]. 遗传, 2015, 37(6): 590-598. |
[11] | 刘霞, 张斌, 毛新国, 李昂, 孙美荣, 景蕊莲. 小麦tae-MIR156前体基因的克隆及其靶基因TaSPL17多态性分析[J]. 遗传, 2014, 36(6): 592-602. |
[12] | 江静, 钱前, 马伯军,高振宇. 表观遗传变异及其在作物改良中的应用[J]. 遗传, 2014, 36(5): 469-475. |
[13] | 何风华 朱碧岩 高峰 李韶山 李娘辉. 孟德尔豌豆基因克隆的研究进展及其在遗传学教学中的应用[J]. 遗传, 2013, 35(7): 931-938. |
[14] | 杨剑波,甘尚权,杨永林,张红琳,宋天增,冯静,杨井泉,高磊,石国庆,沈敏. 绵羊ILK基因的克隆及其在毛囊生长期的表达[J]. 遗传, 2012, 34(6): 719-726. |
[15] | 韩德俊,王宁,江铮,王琪琳,王晓杰,康振生. 小麦新抗源贵农775抗条锈性特征与遗传分析[J]. 遗传, 2012, 34(12): 1607-1613. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: