遗传 ›› 2020, Vol. 42 ›› Issue (9): 916-925.doi: 10.16288/j.yczz.20-113
• 遗传学教学 • 上一篇
赵娜1, 亓宝2, 董芊里3, 王晓丽1
收稿日期:
2020-04-23
修回日期:
2020-08-08
出版日期:
2020-09-20
发布日期:
2020-09-01
作者简介:
赵娜,博士,讲师,研究方向:多倍体植物基因组进化。E-mail: 基金资助:
Na Zhao1, Bao Qi2, Qianli Dong3, Xiaoli Wang1
Received:
2020-04-23
Revised:
2020-08-08
Online:
2020-09-20
Published:
2020-09-01
Supported by:
摘要:
普通小麦(T.aestivum L.)又称异源六倍体小麦,其基因组是由来自3个不同二倍体祖先且亲缘关系较近的基因组(A、B和D)构成。普通小麦的进化历程一直是遗传学教学中阐述物种形成和染色体数目变异机制的经典案例。近年来,伴随着科学技术的快速发展和应用,普通小麦的相关研究在细胞学水平、分子水平、基因组水平均取得了重大突破和进展。本文对普通小麦最新研究成果进行了梳理和总结,将相关前沿科学内容与遗传学各章节的理论教学相结合,并应用于遗传学的理论教学中。这不仅是对经典遗传学教材内容的补充和发展,同时也能够让学生认识到遗传学是一门不断发展的自然科学,在提高学生学习兴趣的同时,实现对遗传学基本内容和前沿科学动态的系统学习。
赵娜, 亓宝, 董芊里, 王晓丽. 普通小麦相关研究进展在遗传学理论教学中的应用[J]. 遗传, 2020, 42(9): 916-925.
Na Zhao, Bao Qi, Qianli Dong, Xiaoli Wang. The applications of research progress of common wheat in teaching genetics[J]. Hereditas(Beijing), 2020, 42(9): 916-925.
表1
普通小麦相关研究案例在遗传学理论教学中的应用框架"
教学案例 | 应用章节 | 教学目标 | 参考文献 |
---|---|---|---|
普通小麦A、B、D亚基因组的分化时间以及杂交、加倍时间的重新界定 | 物种形成与进化 | (1)掌握多倍体的形成方式 (2)掌握普通小麦的形成与进化历程 | [ |
荧光原位杂交技术在普通小麦基因组分型及易位系鉴定中的应用 | 染色体数目变异 染色体结构变异 | (1)掌握核型分析技术在普通小麦细胞学研究和遗传育种研究中的应用 (2)了解染色体结构变异和数目变异类型及细胞学特征 | [ |
矮杆突变、落粒性突变在小麦育种中的应用 | 基因突变 | (1)了解矮杆突变和落粒性突变的分子遗传机制 (2)掌握基因突变的防护机制 | [ |
甲基化修饰导致普通小麦LHS1-B基因、麦谷蛋白基因和麦醇溶蛋白基因的表达沉默 | 表观遗传学 | (1)掌握什么是表观遗传学 (2)了解DNA甲基化的作用机制 | [ |
普通小麦全基因组测序及其在小麦性状解析中的应用进展 | 基因组学 | (1)掌握基因组测序的基本方法和策略 (2)了解普通小麦基因组的特征 | [ |
表2
全基因组关联分析在小麦育种研究中的应用"
小麦性状 | SNP位点数 | 染色体定位 | 材料应用 | 参考文献 |
---|---|---|---|---|
产量(grain yield) | 16 | 3B 6B | 1092株普通小麦 | [ |
穗长(spike length) | 4 | 2A 2B 2D 6A | 192株普通小麦 | [ |
穗粒数(kernels per spike) | 3 | 2A 2B 7B | ||
穗数(spikelet number) | 1 | 7B | ||
淀粉含量(starch content) | 1 | 5B | 1325株冬小麦 | [ |
含水量(moisture) | 3 | 6A 1B | ||
条锈病(stripe rust) | 16 | 1A 1B 1D 2A 2B 5A 6A | 483株春小麦 | [ |
叶锈病(leaf rust) | 18 | 1A 1B 2B 3A 3B 3D 5B 7A | ||
秆锈病(stem rust) | 27 | 1A 1B 1D 2A 2B 3A 3B 3D 5A 5B 6B 7A | ||
腥黑穗病(karnal bunt) | 15 | 2D 3B 4D 7B | 179株优良栽培小麦 | [ |
镰刀菌茎基腐病(fusarium crown rot) | 5 | 5DL | 358株中国优质小麦 | [ |
[1] |
Huang SX, Sirikhachornkit A, Su XJ, Faris J, Gill B, Haselkorn R, Gornicki P . Genes encoding plastid acetyl- CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA, 2002,99(12):8133-8138.
doi: 10.1073/pnas.072223799 pmid: 12060759 |
[2] | Jan D . The relationship between the genome of Triticum urartu and the A and B genomes of Triticum aestivum. Can J Genetics Cytol, 1976,18(2):371-377. |
[3] | Feldman M, Lupton FGH, Miller TE . Wheats. In Evolution of Crop Plants, 2nd ed. London: Longman Scientific, 1995, 184-192. |
[4] |
Marcussen T, Sandve SR, Heier L, Spannagl M, Pfeifer M, Jakobsen KS, Wulff BBH, Steuernagel B, Mayer KFX, Olsen OA . Ancient hybridizations among the ancestral genomes of bread wheat. Science, 2014,345(6194):1250092.
doi: 10.1126/science.1250092 pmid: 25035499 |
[5] |
Chester M, Leitch AR, Soltis PS, Soltis DE . Review of the application of modern cytogenetic methods (FISH/GISH) to the study of reticulation (polyploidy/hybridisation). Genes (Basel), 2010,1(2):166-192.
doi: 10.3390/genes1020166 |
[6] |
Zhao N, Zhu B, Li MJ, Wang L, Xu LY, Zhang HK, Zheng SS, Qi B, Han FP, Liu B . Extensive and heritable epigenetic remodeling and genetic stability accompany allohexaploidization of wheat. Genetics, 2011,188(3):499-510.
doi: 10.1534/genetics.111.127688 |
[7] |
Zhang HK, Bian Y, Gou XW, Dong YZ, Rustgi S, Zhang BJ, Xu CM, Li N, Qi B, Han FP, von Wettstein D, Liu B,. Intrinsic karyotype stability and gene copy number variations may have laid the foundation for tetraploid wheat formation. Proc Natl Acad Sci USA, 2013,110(48):19466-19471.
doi: 10.1073/pnas.1319598110 pmid: 24218593 |
[8] |
Graybosch RA . Uneasy Unions: Quality effects of rye chromatin transfers to wheat. J Cereal Sci, 2001,33(1):3-16.
doi: 10.1006/jcrs.2000.0336 |
[9] | Mago R, Spielmeyer W, Lawrence G, Lagudah E, Ellis J, Pryor A . Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines. Theor Appl Genet, 2002,104(8):1327-1324. |
[10] |
Rabinovich SV . Importance of wheat-rye translocations for breeding modern cultivar of Triticum aestivum L. Euphytica, 1998,100:323-340.
doi: 10.1023/A:1018361819215 |
[11] | Li J, Zhu XG, Wan HS, Wang Q, Tang ZX, Fu SL, Yang ZJ, Yang MY, Yang WY . Identification of the 1RS-7DS.7DL wheat-rye small segment translocation lines. Hereditas (Beijing), 2015,37(6):590-598. |
李俊, 朱欣果, 万洪深, 王琴, 唐宗祥, 符书兰, 杨足君, 杨漫宇, 杨武云 . 1RS-7DS.7DL小麦-黑麦小片段易位系的鉴定. 遗传, 2015,37(6):590-598. | |
[12] |
Zhou Y, He ZH, Sui XX, Xia XC, Zhang XK, Zhang GS . Genetic improvement of grain yield and associated traits in the northern China winter wheat region from 1960 to 2000. Crop Sci, 2007,47(1):245-253.
doi: 10.2135/cropsci2006.03.0175 |
[13] | Schlegel R. Current list of wheats with rye and alien introgression. Version 02-14. 2014.http://www.rye-gene-map.de/rye-introgression . |
[14] | Wei YM, Zheng YL, Zhou RH, Jia JZ . FISH and RFLP were used to detect the rye chromosomes in new multi- spike wheat germplasm 10-A. Bull Bot, 1999,41(7):722-725. |
魏育明, 郑有良, 周荣华, 贾继增 . 应用荧光原位杂交和RFLP标记检测多小穗小麦新种质10-A中的黑麦染色体. 植物学报, 1999,41(7):722-725. | |
[15] | Chen L, Li M, Wang Y, Qiu L, Tang S, Tang ZX, Fu S . Structural variation of chromosomes in wheat-rye 1BL/1RS translocation lines. J Trit Crops, 2015,35(8):1038-1043. |
陈雷, 李萌, 王洋洋, 邱玲, 汤述尧, 唐宗祥, 符书兰 . 小麦-黑麦1BL/1RS易位系中的染色体结构变异. 麦类作物学报, 2015,35(8):1038-1043. | |
[16] |
Danilova TV, Friebe B, Gill BS . Single-copy gene fluorescence in situ hybridization and genome analysis: Acc-2 loci mark evolutionary chromosomal rearrangements in wheat. Chromosoma, 2012,121(6):597-611.
doi: 10.1007/s00412-012-0384-7 |
[17] |
Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP . ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 1999,400(6741):256-261.
doi: 10.1038/22307 pmid: 10421366 |
[18] | Zhao H . Research and utilization of dwarf genes in wheat. J Hebei Agric Sci, 2004,8(4):96-99. |
赵和 . 小麦矮秆基因研究和利用现状. 河北农业科学, 2004,8(4):96-99. | |
[19] | Yang SJ, Zhang XK, He ZH, Xia XC, Zhou Y . Distrubition of dwarfing genes Rht-B1b and Rht-D1b in Chinese bread wheats detected by STS marker. Sci Agric Sin, 2006,39(8):1680-1688. |
杨松杰, 张晓科, 何中虎, 夏先春, 周阳 . 用STS标记检测矮秆基因Rht-B1b和Rht-D1b在中国小麦中的分布. 中国农业科学, 2006,39(8):1680-1688. | |
[20] |
Liu XY, Li S, Wu K, Liu Q, Gao XH, Fu XD . Sustainable crop yields from the coordinated modulation of plant growth and nitrogen metabolism. Chin Sci Bull, 2019,64(25):2633-2640.
doi: 10.1360/TB-2019-0043 |
[21] |
Li S, Tian YH, Wu K, Ye YF, Yu JP, Zhang JQ, Liu Q, Hu MY, Li H, Tong YP, Nicholas PH, Fu XD . Modulating plant growth-metabolism coordination for sustainable agriculture. Nature, 2018,560(7720):595-600.
doi: 10.1038/s41586-018-0415-5 pmid: 30111841 |
[22] |
Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H, Hale I, Mascher M, Spannagl M, Wiebe K, Jordan KW, Golan G, Deek J, Ben ZB, Ben ZG, Himmelbach A, Maclachlan RP, Sharpe AG, Fritz A, Ben DR, Budak H, Fahima T, Korol A, Faris JD, Hernandez A, Mikel MA, Levy AA, Steffenson B, Maccaferri M, Tuberosa R, Cattivelli L, Faccioli P, Ceriotti A, Kashkush K, Pourkheirandish M, Komatsuda T, Eilam T, Sela H, Sharon A, Ohad N, Chamovitz DA, Mayer KF, Stein N, Ronen G, Peleg Z, Pozniak CJ, Akhunov ED, Distelfeld A . Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science, 2017,357(6346):93-97.
doi: 10.1126/science.aan0032 pmid: 28684525 |
[23] |
Shitsukawa N, Tahira C, Kassai KI, Hirabayashi C, Shimizu T, Takumi S, Mochida K, Kawaura K, Ogihara Y, Murai K . Genetic and epigenetic alteration among three homoeologous genes of a class E MADS box gene in hexaploid wheat. Plant Cell, 2007,19(6):1723-1737.
doi: 10.1105/tpc.107.051813 pmid: 17586655 |
[24] |
Wen SS, Wen N, Pang JS, Langen G, Brew-Appiah RAT, Mejias JH, Osorio C, Yang MM, Gemini R, Moehs CP, Zemetra RS, Kogel KH, Liu B, Wang XZ, von Wettstein D, Rustgi S,. Structural genes of wheat and barley 5-methylcytosine DNA glycosylases and their potential applications for human health. Proc Natl Acad Sci USA, 2012,109(50):20543-20548.
doi: 10.1073/pnas.1217927109 pmid: 23184965 |
[25] | Yu HX, Tian JC . Review of genome B in T.aestivum L. Mol Plant Breed, 2008,6(4):724-732. |
于海霞, 田纪春 . 普通小麦B基因组的研究进展. 分子植物育种, 2008,6(4):724-732. | |
[26] |
Dolezel J, Greilhuber J, Suda J . Estimation of nuclear dna content in plants using flow cytometry. Nat Protoc, 2007,2(9):2233-2244.
doi: 10.1038/nprot.2007.310 pmid: 17853881 |
[27] |
Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D'Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo NX, Luo MC, Sehgal S, Kianian S, Gill B, Anderson O, Kersey P, Dvorak J, McCombie R, Hall A, Mayer KFX, Edwards KJ, Bevan MW, Hall N. Analysis of the bread wheat genome using whole genome shotgun sequencing. Nature, 2012,491(7426):705-710.
doi: 10.1038/nature11650 |
[28] |
Clavijo BJ, Venturini L, Schudoma C, Accinelli GG, Kaithakottil G, Wright J, Borrill P, Kettleborough G, Heavens D, Chapman H, Lipscombe J, Barker T, Lu FH, McKenzie N, Raats D, Ramirez-Gonzalez RH, Coince A, Peel N, Percival-Alwyn L, Duncan O, Trösch J, Yu GT, Bolser DM, Namaati G, Kerhornou A, Spannagl M, Gundlach H, Haberer G, Davey RP, Fosker C, Palma FD, Phillips AL, Millar AH, Kersey PJ, Uauy C, Krasileva KV, Swarbreck D, Bevan MW, Clark MD. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res, 2017,27(5):885-896.
doi: 10.1101/gr.217117.116 pmid: 28420692 |
[29] |
Zimin AV, Puiu D, Hall R, Kingan S, Clavijo BJ, Salzberg SL . The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. GigaScience, 2017,6(11):1-7.
doi: 10.1093/gigascience/gix093 pmid: 29048480 |
[30] |
Ling HQ, Zhao SC, Liu DC, Wang JY, Sun H, Zhang C, Fan HJ, Li D, Dong LL, Tao Y, Gao C, Wu HL, Li YW, Cui Y, Guo XS, Zheng SS, Wang B, Yu K, Liang QS, Yang WL, Lou XY, Chen J, Feng MJ, J B, Zhang XF, Luo GB, Jiang Y, Liu JJ, Wang ZB, Sha YH, Zhang BR, Wu HJ, Tang DZ, Shen QH, Xue PY, Zou SH, Wang XJ, Liu X, Wang FM, Yang YP, An XL, Dong ZY, Zhang KP, Zhang XQ, Luo MC, Dvorak J, Tong YP, Wang J, Yang HM, Li ZS, Wang DW, Zhang AM, Wang J. Draft genome of the wheat A-Genome progenitor Triticum urartu. Nature, 2013,496(7443):87-90.
doi: 10.1038/nature11997 |
[31] |
Ling HQ, Ma B, Shi XL, Liu H, Dong LL, Sun H, Cao YH, Gao Q, Zheng SS, Li Y, Yu Y, Du HL, Qi M, Li Y, Lu HW, Yu H, Cui Y, Wang N, Chen CL, Wu HL, Zhao Y, Zhang JC, Li YW, Zhou WJ, Zhang BR, Hu WJ, Van EMT, Tang JF, Witsenboer HMA, Zhao SC, Li ZS, Zhang AM, Wang DW, Liang CZ . Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature, 2018,557(7705):424-428.
doi: 10.1038/s41586-018-0108-0 pmid: 29743678 |
[32] | Shi XL, He YL, Ling HQ . Progress on wheat A genome illustration and its evolutional analysis. Hereditas(Beijing), 2019,41(9):836-844. |
史晓黎, 何伊琳, 凌宏清 . 小麦A基因组测序与进化研究进展. 遗传, 2019,41(9):836-844. | |
[33] |
Luo MC, Gu YQ, Puiu D, Wang H, Twardziok SO, Deal KR, Huo NX, Zhu TT, Wang L, Wang Y, McGuire PE, Liu SY, Long H, Ramasamy RK, Rodriguez JC, Van Sonny L, Yuan LX, Wang ZZ, Xia ZQ, Xiao LC, Anderson OD, Ouyang SH, Liang Y, Zimin AV, Pertea G, Qi P, Bennetzen JL, Dai XT, Dawson MW, Müller HG, Kugler K, Rivarola-Duarte L, Spannagl M, Mayer KFX, Lu FH, Bevan MW, Leroy P, Li PC, You FM, Sun QX, Liu ZY, Lyons E, Wicker T, Salzberg SL, Devos KM, Dvořák J. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature, 2017,551(7681):498-502.
doi: 10.1038/nature24486 pmid: 29143815 |
[34] |
The International Wheat Genome Sequencing Consortium ( IWGSC), Appels R, Kellye E, Nils S, Catherine F, Beat K, Jane R. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361(6403): eaar7191.
doi: 10.1126/science.361.6403.636 pmid: 30115791 |
[35] |
Sehgal D, Rosyara U, Mondal S, Singh R, Poland J, Dreisigacker S . Incorporating genome-wide association mapping results into genomic prediction models for grain yield and yield stability in CIMMYT spring bread wheat. Front Plant Sci, 2020,11:197.
doi: 10.3389/fpls.2020.00197 pmid: 32194596 |
[36] |
Liu J, Xu ZB, Fan XL, Zhou Q, Cao J, Wang F, Ji GS, Yang L, Feng B, Wang T . A genome-wide association study of wheat spike related traits in China. Front Plant Sci, 2018,9:1584.
doi: 10.3389/fpls.2018.01584 pmid: 30429867 |
[37] |
Tsai HY, Janss LL, Andersen JR, Orabi J, Jensen JD, Jahoor A, Jensen J . Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat. Sci Rep, 2020,10(1):3347.
doi: 10.1038/s41598-020-60203-2 pmid: 32099054 |
[38] |
Kumar D, Kumar A, Chhokar V, Gangwar OP, Bhardwaj SC, Sivasamy M, Prasad SVS, Prakasha TL, Khan H, Singh R, Sharma P, Sheoran S, Iquebal MA, Jaiswal S, Angadi UB, Singh G, Rai A, Singh GP, Kumar D and Tiwari R,. Genome-wide association studies in diverse spring wheat panel for stripe, stem, and leaf rust resistance. Front Plant Sci, 2020,11:748.
doi: 10.3389/fpls.2020.00748 pmid: 32582265 |
[39] |
Singh S, Sehgal D, Kumar S, Arif MAR, Vikram P, Sansaloni CP, Fuentes-Dávila G, Ortiz C . GWAS revealed a novel resistance locus on chromosome 4D for the quarantine disease Karnal bunt in diverse wheat pre-breeding germplasm. Sci Rep, 2020,10(1):5999.
doi: 10.1038/s41598-020-62711-7 pmid: 32265455 |
[40] |
Jin JJ, Duan SN, Qi YZ, Yan SH, Li W, Li BY, Xie CJ, Zhen WC, Ma J . Identification of a novel genomic region associated with resistance to Fusarium crown rot in wheat. Theor Appl Genet, 2020,133(7):2063-2073.
doi: 10.1007/s00122-020-03577-1 pmid: 32172298 |
[41] |
Masterson J . Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science, 1994,264(5157):421-424.
doi: 10.1126/science.264.5157.421 pmid: 17836906 |
[42] | Liu QC. Genetics (Third edition). Beijing: Science Press, 2015. |
刘庆昌. 遗传学(第三版). 北京: 科学出版社, 2015. |
[1] | 马捷, 黄露杰, 张巧霞, 朱艳, 钱露. 以A2型短指(趾)症为案例的医学遗传学PBL教学设计[J]. 遗传, 2023, 45(2): 176-183. |
[2] | 谢甜, 王梅, 高瑞钰, 苗艳尼, 张燚铭, 蒋婧. 光控诱导重组系统的开发与应用[J]. 遗传, 2022, 44(8): 655-671. |
[3] | 王飞, 王萌, 张兴华, 宇克莉, 郑连斌, 杨亚军. 中国西南地区3个隔离人群遗传亚结构分析[J]. 遗传, 2022, 44(5): 424-431. |
[4] | 孔永强, 刘金凯, 顾佳琪, 徐景怡, 郑雨诺, 魏以梁, 伍少远. 南-北方汉族人、韩国人和日本人遗传划分机器学习模型优化方案[J]. 遗传, 2022, 44(11): 1028-1043. |
[5] | 郭晓媛, 孙昌春, 薛思瑶, 赵慧, 江丽, 李彩霞. 49AISNP:东亚北方三个族群遗传来源推断[J]. 遗传, 2021, 43(9): 880-889. |
[6] | 王海燕, 龚志云, 蒋甲福, 周宝良, 娄群峰, 曹清河, 席梦利, 陈佩度, 顾铭洪, 张天真, 陈发棣, 陈劲枫, 李宗芸, 王秀娥. 江苏省植物细胞遗传学研究回顾与展望[J]. 遗传, 2021, 43(5): 397-424. |
[7] | 文子龙, 赵毅强. 群体遗传学下动物驯化研究进展[J]. 遗传, 2021, 43(3): 226-239. |
[8] | 张向前, 李楠, 解新明. 表观遗传学综合性实验设计与探讨[J]. 遗传, 2021, 43(12): 1179-1187. |
[9] | 李茜, 王浩宇, 曹悦岩, 朱强, 舒潘寅, 侯婷芸, 王雨婷, 张霁. 微单倍型遗传标记的法医基因组学研究[J]. 遗传, 2021, 43(10): 962-971. |
[10] | 刘志勇, 乌日嘎, 李燃, 王蔷薇, 孙宏钰. 法医遗传学研究和鉴定中的伦理问题[J]. 遗传, 2021, 43(10): 994-1002. |
[11] | 孙小媛, 王一帆, 王韫慧, 蔺佳雨, 李金红, 丘远涛, 方小龙, 孔凡江, 李美娜. 大豆细胞核雄性不育基因研究进展[J]. 遗传, 2021, 43(1): 52-65. |
[12] | 王涛, 梁亮, 郑敏化. 形成性评价与教学反馈在医学遗传学PBL教学中的应用[J]. 遗传, 2020, 42(8): 810-816. |
[13] | 胡颖楚, 胡豪畅, 林少沂, 陈晓敏. DNA羟甲基化调控动脉粥样硬化的研究进展[J]. 遗传, 2020, 42(7): 632-640. |
[14] | 王小娟, 钱恩芳, 李悦, 宋正阳, 赵慧, 谢何鑫, 李彩霞, 黄江, 江丽. 中国西南地区藏族人群遗传亚结构研究[J]. 遗传, 2020, 42(6): 565-576. |
[15] | 刘杨, 孙昌春, 马咪, 王玲, 赵雯婷, 马泉, 季安全, 刘京, 李彩霞. 74-plex SNPs复合检测体系在中国人群中的族群推断研究[J]. 遗传, 2020, 42(3): 296-308. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: