[1] | Li JF, Norville JE, Aach J , McCormack M,Zhang D, Bush J, Church GM, Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol, 2013,31(8):688-691. | [2] | Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu JK . Efficient genome editing in plants using a CRISPR/Cas system. Cell Res, 2013,23(10):1229-1232. | [3] | Lozano-Juste J, Cutler SR . Plant genome engineering in full bloom. Trends Plant Sci, 2014,19(5):284-287. | [4] | Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP . Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res, 2013,41(20):e188. | [5] | Upadhyay SK, Kumar J, Alok A, Tuli R . RNA-guided genome editing for target gene mutations in wheat. G3 (Bethesda), 2013,3(12):2233-2238. | [6] | Liang Z, Zhang K, Chen K, Gao C . Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas9 system. J Genet Genom, 2014,41(2):63-68. | [7] | Jia H, Wang N . Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One, 2014,9(4):e93806. | [8] | Gao W, Long L, Tian X, Xu F, Liu J, Singh PK, Botella JR, Song C . Genome editing in cotton with the CRISPR/Cas9 system. Front Plant Sci, 2017,8:1364. | [9] | Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K . Efficient CRISPR/Cas9-mediated targeted mutagenesis in populus in the first generation. Sci Rep, 2015,5:12217. | [10] | Puchta H . The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J Exp Bot, 2005,56(409):1-14. | [11] | Sugano SS, Shirakawa M, Takagi J, Matsuda Y, Shimada T, Hara-Nishimura I, Kohchi T . CRISPR/ Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L. Plant Cell Physiol, 2014,55(3):475-481. | [12] | Yan L, Wei S, Wu Y, Hu R, Li H, Yang W, Xie Q . High-efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system. Mol Plant, 2015,8(12):1820-1823. | [13] | Mikami M, Toki S, Endo M . Comparison of CRISPR/ Cas9 expression constructs for efficient targeted mutagenesis in rice. Plant Mol Biol, 2015,88(6):561-572. | [14] | Lloyd A, Plaisier CL, Carroll D, Drews GN . Targeted mutagenesis using zinc-finger nucleases in Arabidopsis . Proc Natl Acad Sci USA, 2005,102(6):2232-2237. | [15] | Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li X, Pierick CJ, Dobbs D, Peterson T, Joung JK, Voytas DF . |
[1] |
郭雨萱, 严顺平, 王应祥. 重组酶RAD51和DMC1功能保守和分化研究进展[J]. 遗传, 2022, 44(5): 398-413. |
[2] |
耿喜宁, 芦特, 杜康, 杨珺, 康向阳. 不同基因型毛白杨同源重组变异研究[J]. 遗传, 2021, 43(2): 182-193. |
[3] |
李国玲, 杨善欣, 吴珍芳, 张献伟. 提高CRISPR/Cas9介导的动物基因组精确插入效率 研究进展[J]. 遗传, 2020, 42(7): 641-656. |
[4] |
李帆, 余蓉培, 孙丹, 王继华, 李绅崇, 阮继伟, 单芹丽, 陆平利, 汪国鲜. 抑制植物减数分裂重组的分子机理[J]. 遗传, 2019, 41(1): 52-65. |
[5] |
全绒, 李国玲, 莫健新, 钟翠丽, 李紫聪, 顾婷, 郑恩琴, 刘德武, 蔡更元, 吴珍芳, 张献伟. RNA干扰猪NHEJ通路修复因子对HR效率的影响[J]. 遗传, 2018, 40(9): 749-757. |
[6] |
梁彩娇, 孟繁梅, 艾云灿. 基于CRISPR/Cas系统的噬菌体基因组编辑[J]. 遗传, 2018, 40(5): 378-389. |
[7] |
黄敏,杨业然,孙晓艳,张婷,郭彩霞. RAD51调控REV1参与DNA双链断裂修复[J]. 遗传, 2018, 40(11): 1007-1014. |
[8] |
贺燕,谢梦女,余立,任真,朱芳,符淳. 范可尼贫血基因在卵泡发育中的调节作用[J]. 遗传, 2017, 39(6): 469-481. |
[9] |
李国玲,钟翠丽,莫健新,全绒,吴珍芳,李紫聪,杨化强,张献伟. 动物基因组定点整合转基因技术研究进展[J]. 遗传, 2017, 39(2): 98-109. |
[10] |
王伟, 王玉霜, 黄兰兰, 简子健, 王新华, 刘守仁, 皮文辉. siRNA干扰绵羊胚胎成纤维细胞Lig4基因增加同源重组载体重连修复效率[J]. 遗传, 2016, 38(9): 831-839. |
[11] |
杨献伟,杨瑞馥,崔玉军. 细菌基因组同源重组:量化与鉴定[J]. 遗传, 2016, 38(2): 137-143. |
[12] |
殷利眷,胡斯奇,郭斐. CRISPR-Cas9基因编辑技术在病毒感染疾病治疗中的应用[J]. 遗传, 2015, 37(5): 412-418. |
[13] |
王小利,姜闯,刘建华,刘喜朋. 一种基于线性DNA片段同源重组的嗜盐古菌高效基因敲除系统[J]. 遗传, 2015, 37(4): 388-395. |
[14] |
白敏, 李崎, 邵艳姣, 黄元华, 李大力, 马燕琳. 利用CRISPR/Cas9技术构建定点突变小鼠品系[J]. 遗传, 2015, 37(10): 1029-1035. |
[15] |
单奇伟, 高彩霞. 植物基因组编辑及衍生技术最新研究进展[J]. 遗传, 2015, 37(10): 953-973. |
|