[1] Chatterjee S, Kraus P, Lufkin T. A symphony of inner ear developmental control genes. BMC Genet, 2010, 11: 68.
[2] McCabe KL, Bronner-Fraser M. Molecular and tissue in-teractions governing induction of cranial ectodermal pla-codes. Dev Biol, 2009, 332(2): 189–195.
[3] Murata J, Ikeda K, Okano H. Notch signaling and the developing inner ear. Adv Exp Med Biol, 2012, 727: 161–173.
[4] Chai RJ, Kuo BY, Wang T, Liaw EJ, Xia AP, Jan TA, Liu ZY, Taketo MM, Oghalai JS, Nusse R, Zuo J, Cheng AG. Wnt signaling induces proliferation of sensory precursors in the postnatal mouse cochlea. Proc Natl Acad Sci USA, 2012, 109(21): 8167–8172.
[5] Fietz MJ, Concordet JP, Barbosa R, Johnson R, Krauss S, McMahon AP, Tabin C, Ingham PW. The hedgehog gene family in Drosophila and vertebrate development. Devel-opment, 1994, (Suppl.): 43–51.
[6] Kawai Y, Noguchi J, Akiyama K, Takeno Y, Fujiwara Y, Kajita S, Tsuji T, Kikuchi K, Kaneko H, Kunieda T. A missense mutation of the Dhh gene is associated with male pseudohermaphroditic rats showing impaired Leydig cell development. Reproduction, 2011, 141(2): 217–225.
[7] Ingham PW. Hedgehog signalling. Curr Biol, 2008, 18(6): R238–R241.
[8] Marigo V, Roberts DJ, Lee SMK, Tsukurov O, Levi T, Gastier JM, Epstein DJ, Gilbert DJ, Copeland NG, Seid-man CE, Jenkins NA, Seidman JG, Mcmahon AP, Tabin C. Cloning, expression, and chromosomal location of SHH and IHH: two human homologues of the Drosophila seg-ment polarity gene hedgehog. Genomics, 1995, 28(1): 44–51.
[9] Cobourne MT, Green JBA. Hedgehog signalling in devel-opment of the secondary palate. Front Oral Biol, 2012, 16: 52–59.
[10] Hu JX, He L . Patterning mechanisms controlling digit development. J Genet Genomics, 2008, 35(9): 517?524.
[11] Clément R, Blanc P, Mauroy B, Sapin V, Douady S. Shape self-regulation in early lung morphogenesis. PLoS ONE, 2012, 7(5): e36925.
[12] Watson S, Serrate C, Vignot S. Sonic Hedgehog signaling pathway: from embryology to molecular targeted therapies. Bull Cancer, 2010, 97(12): 1477–1483.
[13] Rohatgi R, Scott MP. Arrestin' movement in cilia. Science, 2008, 320(5884): 1726–1727.
[14] Shen F, Cheng L, Douglas AE, Riobo NA, Manning DR. Smoothened is a fully competent activator of the Hetero-trimeric G protein Gi. Mol Pharmacol, 2013, 83(3): 691–697.
[15] Varjosalo M, Taipale J. Hedgehog: functions and mecha-nisms. Genes Dev, 2008, 22(18): 2454–2472.
[16] Lum L, Beachy PA. The Hedgehog response network: sensors, switches, and routers. Science, 2004, 304(5678): 1755–1759.
[17] Bok J, Dolson DK, Hill P, Ruther U, Epstein DJ, Wu DK. Opposing gradients of Gli repressor and activators mediate Shh signaling along the dorsoventral axis of the inner ear. Development, 2007, 134(9): 1713–1722.
[18] Hammond KL, Whitfield TT. Expression of zebrafish hip: response to Hedgehog signalling, comparison with ptc1 expression, and possible role in otic patterning. Gene Expr Patterns, 2009, 9(6): 391–396.
[19] Riccomagno MM, Takada S, Epstein DJ. Wnt-dependent regulation of inner ear morphogenesis is balanced by the opposing and supporting roles of Shh. Genes Dev, 2005, 19(13): 1612–1623.
[20] Wilson NH, Stoeckli ET. Chapter eight-Sonic Hedgehog regulates Wnt activity during neural circuit formation. Vitam Horm, 2012, 88: 173–209.
[21] Burton Q, Cole LK, Mulheisen M, Chang W, Wu DK. The role of Pax2 in mouse inner ear development. Dev Biol, 2004, 272(1): 161–175.
[22] Riccomagno MM, Martinu L, Mulheisen M, Wu DK, Ep-stein DJ. Specification of the mammalian cochlea is de-pendent on Sonic hedgehog. Genes Dev, 2002, 16(18): 2365–2378.
[23] Balaskas N, Ribeiro A, Panovska J, Dessaud E, Sasai N, Page KM, Briscoe J, Ribes V. Gene regulatory logic for reading the Sonic Hedgehog signaling gradient in the ver-tebrate neural tube. Cell, 2012, 148(1?2): 273–284.
[24] Fantetti KN, Fekete DM. Members of the BMP, Shh, and FGF morphogen families promote chicken statoacoustic ganglion neurite outgrowth and neuron survival in vitro. Dev Neurobiol, 2012, 72(9): 1213–1228.
[25] Cai CY, Thorne J, Grabel L. Hedgehog serves as a mitogen and survival factor during embryonic stem cell neuro-genesis. Stem Cells, 2008, 26(5): 1097–1108.
[26] Biehs B, Kechris K, Liu SM, Kornberg TB. Hedgehog targets in the Drosophila embryo and the mechanisms that generate tissue-specific outputs of Hedgehog signaling. Development, 2010, 137(22): 3887–3898.
[27] Brown AS, Epstein DJ. Otic ablation of smoothened re-veals direct and indirect requirements for Hedgehog sig-naling in inner ear development. Development, 2011, 138(18): 3967–3976.
[28] Evsen L, Sugahara S, Uchikawa M, Kondoh H, Wu DK. Progression of neurogenesis in the inner ear requires inhi-bition of Sox2 transcription by neurogenin1 and neurod1. J Neurosci, 2013, 33(9): 3879–3890.
[29] Liu ZY, Owen T, Zhang LL, Zuo J. Dynamic expression pattern of Sonic hedgehog in developing cochlear spiral ganglion neurons. Dev Dyn, 2010, 239(6): 1674–1683.
[30] Groves AK, Fekete DM. Shaping sound in space: the regulation of inner ear patterning. Development, 2012, 139(2): 245–257.
[31] Driver EC, Pryor SP, Hill P, Turner J, Rüther U, Biesecker LG, Griffith AJ, Kelley MW. Hedgehog signaling regulates sensory cell formation and auditory function in mice and humans. J Neurosci, 2008, 28(29): 7350–7358.
[32] Dror AA, Avraham KB. Hearing loss: mechanisms re-vealed by genetics and cell biology. Annu Rev Genet, 2009, 43(1): 411–437.
[33] Liu ZY, Dearman JA, Cox BC, Walters BJ, Zhang L, Ay-rault O, Zindy F, Gan L, Roussel MF, Zuo J. Age-dependent in vivo conversion of mouse cochlear pillar and Deiters' cells to immature hair cells by Atoh1 ectopic ex-pression. J Neurosci, 2012, 32(19): 6600–6610.
[34] Hu XH, Huang JM, Feng L, Fukudome S, Hamajima Y, Lin JZ. Sonic hedgehog (SHH) promotes the differentia-tion of mouse cochlear neural progenitors via the Math1- Brn3. 1 signaling pathway in vitro. J Neurosci Res, 2010, 88(5): 927–935.
[35] Hammond KL, Loynes HE, Folarin AA, Smith J, Whit-field TT. Hedgehog signalling is required for correct an-teroposterior patterning of the zebrafish otic vesicle. De-velopment, 2003, 130(7): 1403–1417.
[36] Waldman EH, Castillo A, Collazo A. Ablation studies on the developing inner ear reveal a propensity for mirror duplications. Dev Dyn, 2007, 236(5): 1237–1248.
[37] Hammond KL, van Eeden FJM, Whitfield TT. Repression of Hedgehog signalling is required for the acquisition of dorsolateral cell fates in the zebrafish otic vesicle. Devel-opment, 2010, 137(8): 1361–1371.
[38] Jiang J, Hui CC. Hedgehog signaling in development and cancer. Dev Cell, 2008, 15(6): 801–812.
[39] Pan A, Chang L, Nguyen A, James AW. A review of hedgehog signaling in cranial bone development. Front Physiol, 2013, 4: 61.
[40] Johnston JJ, Olivos-Glander I, Killoran C, Elson E, Turner JT, Peters KF, Abbott MH, Aughton DJ, Aylsworth AS, Bamshad MJ, Booth C, Curry CJ, David A, Dinulos MB, Flannery DB, Fox MA, Graham JM, Grange DK, Gutt-macher AE, Hannibal MC, Henn W, Hennekam RC, Holmes LB, Hoyme HE, Biesecker LG. Molecular and clinical analyses of Greig cepha-lopolysyndactyly and Pallister-Hall syndromes: robust phenotype prediction from the type and position of GLI3 mutations. Am J Hum Genet, 2005, 76(4): 609–622.
[41] Jones GP, Lukashkina VA, Russell IJ, Elliott SJ, Lu-kashkin AN. Frequency-dependent properties of the tecto-rial membrane facilitate energy transmission and amplifi-cation in the cochlea. Biophys J, 2013, 104(6): 1357–1366.
[42] Pingault V, Bondurand N, Kuhlbrodt K, Goerich DE, Préhu MO, Puliti A, Herbarth B, Hermans-Borgmeyer I, Legius E, Matthijs G, Amiel J, Lyonnet S, Ceccherini I, Romeo G, Smith JC, Read AP, Wegner M, Goossens M. SOX10 mutations in patients with Waardenburg-Hirschs¬prung disease. Nat Genet, 1998, 18(2): 171–173.
[43] Pingault V, Ente D, Dastot-Le Moal F, Goossens M, Mar-lin S, Bondurand N. Review and update of mutations causing Waardenburg syndrome. Hum Mutat, 2010, 31(4): 391–406.
[44] Matera I, Watkins-Chow DE, Loftus SK, Hou L, Incao A, Silver DL, Rivas C, Elliott EC, Baxter LL, Pavan WJ. A sensitized mutagenesis screen identifies Gli3 as a modifier of Sox10 neurocristopathy. Hum Mol Genet, 2008, 17(14): 2118–2131.
[45] Northcott PA, Jones DTW, Kool M, Robinson GW, Gilbertson RJ, Cho YJ, Pomeroy SL, Korshunov A, Lich-ter P, Taylor MD, Pfister SM. Medulloblastomics: the end of the beginning. Nat Rev Cancer, 2012, 12(12): 818–834.
[46] Gibson P, Tong YA, Robinson G, Thompson MC, Currle DS, Eden C, Kranenburg TA, Hogg T, Poppleton H, Mar-tin J, Finkelstein D, Pounds S, Weiss A, Patay Z, Scoggins M, Ogg R, Pei YX, Yang ZJ, Brun S, Lee Y, Zindy F, Lindsey JC, Taketo MM, Boop FA, Sanford RA, Gajjar A, Clifford SC, Roussel MF, McKinnon PJ, Gutmann DH, Ellison DW, Wechsler-Reya R, Gilbertson RJ. Subtypes of medulloblastoma have distinct developmental origins. Nature, 2010, 468(7327): 1095–1099.
[47] Visvader JE. Cells of origin in cancer. Nature, 2011, 469(7330): 314–322.
[48] Jones DT, Jäger N, Kool M, Zichner T, Hutter B, Sultan M, Cho YJ, Pugh TJ, Hovestadt V, Stütz AM, Rausch T, War-natz HJ, Ryzhova M, Bender S, Sturm D, Pleier S, Cin H, Pfaff E, Sieber L, Wittmann A, Remke M, Witt H, Hutter S, Tzaridis T, Weischenfeldt J, Raeder B, Avci M, Amsti-slavskiy V, Zapatka M, Weber UD, Wang Q, Lasitschka B, Bartholomae CC, Lichter P. Dissecting the genomic complexity underlying medulloblastoma. Nature, 2012, 488(7409): 100–105.
[49] Flora A, Klisch TJ, Schuster G, Zoghbi HY. Deletion of Atoh1 disrupts Sonic Hedgehog signaling in the develop-ing cerebellum and prevents medulloblastoma. Science, 2009, 326(5958): 1424–1427.
[50] Terakawa Y, Tsuyuguchi N, Takami T, Ohata K. Medul-loblastoma manifesting as sudden sensorineural hearing loss. J Korean Neurosurg Soc, 2011, 50(1): 51–53.
[51] Amene CS, Yeh-Nayre LA, Crawford JR. Isolated Sen-sorineural Hearing loss as initial presentation of recurrent medulloblastoma: neuroimaging and audiologic correlates. Clin Neuroradiol, 2012, doi: 10.1007/s00062-012-0186-6.
[52] Ma G, Xiao Y, He L. Recent progress in the study of Hedge-hog signaling. J Genet Genomics, 2008, 35(3): 129–137
[53] Yuan YY, You YW, Huang DL, Cui JH, Wang Y, Wang Q, Yu F, Kang DY, Yuan HJ, Han DY, Dai P. Comprehensive molecular etiology analysis of nonsyndromic hearing im-pairment from typical areas in China. J Transl Med, 2009, 7(1): 79.
[54] Rodriguez-Paris J, Pique L, Colen T, Roberson J, Gardner P, Schrijver I. Genotyping with a 198 mutation arrayed primer extension array for hereditary hearing loss: as-sessment of its diagnostic value for medical practice. PLoS ONE, 2010, 5(7): e11804. |