[1] | Siegel R, Ma JM, Zou ZH, Jemal A. Cancer statistics, 2014. CA Cancer J Clin, 2014, 64(1): 9-29. | [2] | Perou CM, S?rlie T, Eisen MB, Van De Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge ?, Pergamenschikov A, Williams C, Zhu SX, L?nning PE, B?rresen-Dale AL, Brown PO, Botstein D. Molecular portraits of human breast tumours. Nature, 2000, 406(6797): 747-752. | [3] | The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature, 2012, 490(7418): 61-70. | [4] | Johnson R, Halder G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov, 2014, 13(1): 63-79. | [5] | Zhao B, Wei XM, Li WQ, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu JD, Li L, Zheng P, Ye KQ, Chinnaiyan A, Halder G, Lai ZC, Guan KL. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev, 2007, 21(21): 2747-2761. | [6] | Lei QY, Zhang H, Zhao B, Zha ZY, Bai F, Pei XH, Zhao SM, Xiong Y, Guan KL. TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol Cell Biol, 2008, 28(7): 2426-2436. | [7] | Cui CB, Cooper LF, Yang XL, Karsenty G, Aukhil I. Transcriptional coactivation of bone-specific transcription factor Cbfa1 by TAZ. Mol Cell Biol, 2003, 23(3): 1004-1013. | [8] | Jeong H, Bae S, An SY, Byun MR, Hwang JH, Yaffe MB, Hong JH, Hwang ES. TAZ as a novel enhancer of MyoD-mediated myogenic differentiation. FASEB J, 2010, 24(9): 3310-3320. | [9] | Hong JH, Hwang ES, McManus MT, Amsterdam A, Tian Y, Kalmukova R, Mueller E, Benjamin T, Spiegelman BM, Sharp PA, Hopkins N, Yaffe MB. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science, 2005, 309(5737): 1074-1078. | [10] | Park KS, Whitsett JA, Di Palma T, Hong JH, Yaffe MB, Zannini M. TAZ interacts with TTF-1 and regulates expression of surfactant protein-C. J Biol Chem, 2004, 279(17): 17384-17390. | [11] | Murakami M, Tominaga J, Makita R, Uchijima Y, Kurihara Y, Nakagawa O, Asano T, Kurihara H. Transcriptional activity of Pax3 is co-activated by TAZ. Biochem Biophys Res Commun, 2006, 339(2): 533-539. | [12] | Di Palma T, D'Andrea B, Liguori GL, Liguoro A, de Cristofaro T, Del Prete D, Pappalardo A, Mascia A, Zannini M. TAZ is a coactivator for Pax8 and TTF-1, two transcription factors involved in thyroid differentiation. Exp Cell Res, 2009, 315(2): 162-175. | [13] | Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM, Dembowy J, Yaffe MB, Zandstra PW, Wrana JL. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol, 2008, 10(7): 837-848. | [14] | Mahoney WM, Jr, Hong JH, Yaffe MB, Farrance IKG. The transcriptional co-activator TAZ interacts differentially with transcriptional enhancer factor-1 (TEF-1) family members. Biochem J, 2005, 388(1): 217-225. | [15] | Hong JH, Yaffe MB. TAZ: a & β-catenin-like molecule that regulates mesenchymal stem cell differentiation. Cell Cycle, 2006, 5(2): 176-179. | [16] | Chan SW, Lim CJ, Huang C, Chong YF, Gunaratne HJ, Hogue KA, Blackstock WP, Harvey KF, Hong W. WW domain-mediated interaction with Wbp2 is important for the oncogenic property of TAZ. Oncogene, 2011, 30(5): 600-610. | [17] | Remue E, Meerschaert K, Oka T, Boucherie C, Vandekerckhove J, Sudol M, Gettemans J. TAZ interacts with zonula occludens-1 and-2 proteins in a PDZ-1 dependent manner. FEBS Lett, 2010, 584(19): 4175-4180. | [18] | Kim M, Kim T, Johnson RL, Lim DS. Transcriptional co- repressor function of the hippo pathway transducers YAP and TAZ. Cell Rep, 2015, 11(2): 270-282. | [19] | Valencia-Sama I, Zhao YL, Lai D, Janse van Rensburg HJ, Hao YW, Yang XL. Hippo component TAZ functions as a co-repressor and negatively regulates ΔNp63 transcription through TEA domain (TEAD) transcription factor. J Biol Chem, 2015, 290(27): 16906-16917. | [20] | Hossain Z, Ali SM, Ko HL, Xu JL, Ng CP, Guo K, Qi Z, Ponniah S, Hong WJ, Hunziker W. Glomerulocystic kidney disease in mice with a targeted inactivation of Wwtr1. Proc Natl Acad Sci USA, 2007, 104(5): 1631-1636. | [21] | Tian Y, Kolb R, Hong JH, Carroll J, Li DW, You J, Bronson R, Yaffe MB, Zhou J, Benjamin T. TAZ promotes PC2 degradation through a SCF β-Trcp E3 ligase complex. Mol Cell Biol, 2007, 27(18): 6383-6395. | [22] | Reginensi A, Scott RP, Gregorieff A, Bagherie-Lachidan M, Chung C, Lim DS, Pawson T, Wrana J, McNeill H. Yap-and Cdc42-dependent nephrogenesis and morphogenesis during mouse kidney development. PLoS Genet, 2013, 9(3): e1003380. | [23] | Nakatani K, Maehama T, Nishio M, Goto H, Kato W, Omori H, Miyachi Y, Togashi H, Shimono Y, Suzuki A. Targeting the Hippo signalling pathway for cancer treatment. J Biochem, 2016, 161(3): 237-244. | [24] | Harvey K, Tapon N. The Salvador-Warts-Hippo pathway- an emerging tumour-suppressor network. Nat Rev Cancer, 2007, 7(3): 182-191. | [25] | Zhao B, Li L, Lei QY, Guan KL. The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev, 2010, 24(9): 862-874. | [26] | Hoa L, Kulaberoglu Y, Gundogdu R, Cook D, Mavis M, Gomez M, Gomez V, Hergovich A. The characterisation of LATS2 kinase regulation in Hippo-YAP signalling. Cell Signal, 2016, 28(5): 488-497. | [27] | Li Q, Li SX, Mana-Capelli S, Flach RJR, Danai LV, Amcheslavsky A, Nie YC, Kaneko S, Yao XH, Chen XC, Cotton JL, Mao JH, McCollum D, Jiang J, Czech MP, Xu L, Ip YT. The conserved misshapen-warts-Yorkie pathway acts in enteroblasts to regulate intestinal stem cells in Drosophila. Dev Cell, 2014, 31(3): 291-304. | [28] | Meng ZP, Moroishi T, Mottier-Pavie V, Plouffe SW, Hansen CG, Hong AW, Park HW, Mo JS, Lu WQ, Lu SC, Flores F, Yu FX, Halder G, Guan KL. MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat Commun, 2015, 6: 8357. | [29] | Zheng YG, Wang W, Liu B, Deng H, Uster E, Pan DJ. Identification of Happyhour/MAP4K as Alternative Hpo/Mst-like Kinases in the Hippo Kinase Cascade. Dev Cell, 2015, 34(6): 642-655. | [30] | Liu CY, Lv XB, Li TT, Xu YP, Zhou X, Zhao SM, Xiong Y, Lei QY, Guan KL. PP1 cooperates with ASPP2 to dephosphorylate and activate TAZ. J Biol Chem, 2011, 286(7): 5558-5566. | [31] | Yu FX, Zhao B, Guan KL. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell, 2015, 163(4): 811-828. | [32] | Zhang H, Liu CY, Zha ZY, Zhao B, Yao J, Zhao SM, Xiong Y, Lei QY, Guan KL. TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. J Biol Chem, 2009, 284(20): 13355-13362. | [33] | Zhao B, Ye X, Yu JD, Li L, Li WQ, Li SM, Lin JD, Wang CY, Chinnaiyan AM, Lai ZC, Guan KL. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev, 2008, 22(14): 1962-1971. | [34] | Liu CY, Zha ZY, Zhou X, Zhang H, Huang W, Zhao D, Li TT, Chan SW, Lim CJ, Hong WJ, Zhao SM, Xiong Y, Lei QY, Guan KL. The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF β-TrCP E3 ligase. J Biol Chem, 2010, 285(48): 37159-37169. | [35] | Huang W, Lv XB, Liu CY, Zha ZY, Zhang H, Jiang Y, Xiong Y, Lei QY, Guan KL. The N-terminal phosphodegron targets TAZ/WWTR1 protein for SCF β-TrCP- dependent degradation in response to phosphatidylinositol 3-kinase inhibition. J Biol Chem, 2012, 287(31): 26245-26253. | [36] | Zhao B, Li L, Tumaneng K, Wang CY, Guan KL. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev, 2010, 24(1): 72-85. | [37] | Mo JS, Yu FX, Gong R, Brown JH, Guan KL. Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs). Genes Dev, 2012, 26(19): 2138-2143. | [38] | Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH, Zhao JG, Yuan H, Tumaneng K, Li HR, Fu XD, Mills GB, Guan KL. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell, 2012, 150(4): 780-791. | [39] | Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S. Role of YAP/TAZ in mechanotransduction. Nature, 2011, 474(7350): 179-183. | [40] | Zhao B, Li L, Wang L, Wang CY, Yu JD, Guan KL. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev, 2012, 26(1): 54-68. | [41] | Miller E, Yang JY, DeRan M, Wu CL, Su AI, Bonamy GM, Liu J, Peters EC, Wu X. Identification of serum-derived sphingosine-1-phosphate as a small molecule regulator of YAP. Chem Biol, 2012, 19(8): 955-962. | [42] | Zhou X, Wang SY, Wang Z, Feng X, Liu P, Lv XB, Li FL, Yu FX, Sun YP, Yuan HX, Zhu HG, Xiong Y, Lei QY, Guan KL. Estrogen regulates Hippo signaling via GPER in breast cancer. J Clin Invest, 2015, 125(5): 2123-2135. | [43] | Yu FX, Zhang YF, Park HW, Jewell JL, Chen Q, Deng YT, Pan DJ, Taylor SS, Lai ZC, Guan KL. Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation. Genes Dev, 2013, 27(11): 1223-1232. | [44] | Yu FX, Guan KL. The Hippo pathway: regulators and regulations. Genes Dev, 2013, 27(4): 355-371. | [45] | Zhou X, Wang Z, Huang W, Lei QY. G protein-coupled receptors: bridging the gap from the extracellular signals to the Hippo pathway. Acta Biochim Biophys Sin, 2015, 47(1): 10-15. | [46] | Warburg O. On respiratory impairment in cancer cells. Science, 1956, 124(3215): 267-270. | [47] | Warburg O. On the origin of cancer cells. Science, 1956, 123(3191): 309-314. | [48] | DeRan M, Yang JY, Shen CH, Peters EC, Fitamant J, Chan P, Hsieh M, Zhu SY, Asara JM, Zheng B, Bardeesy N, Liu J, Wu X. Energy stress regulates hippo-YAP signaling involving AMPK-mediated regulation of angiomotin-like 1 protein. Cell Rep, 2014, 9(2): 495-503. | [49] | Mo JS, Meng ZP, Kim YC, Park HW, Hansen CG, Kim S, Lim DS, Guan KL. Cellular energy stress induces AMPK- mediated regulation of YAP and the Hippo pathway. Nat Cell Biol, 2015, 17(4): 500-510. | [50] | Wang WQ, Xiao ZD, Li X, Aziz KE, Gan BY, Johnson RL, Chen JJ. AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat Cell Biol, 2015, 17(4): 490-499. | [51] | Enzo E, Santinon G, Pocaterra A, Aragona M, Bresolin S, Forcato M, Grifoni D, Pession A, Zanconato F, Guzzo G, Bicciato S, Dupont S. Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J, 2015, 34(10): 1349-1370. | [52] | Sorrentino G, Ruggeri N, Specchia V, Cordenonsi M, Mano M, Dupont S, Manfrin A, Ingallina E, Sommaggio R, Piazza S, Rosato A, Piccolo S, Del Sal G. Metabolic control of YAP and TAZ by the mevalonate pathway. Nat Cell Biol, 2014, 16(4): 357-366. | [53] | Conley SJ, Gheordunescu E, Kakarala P, Newman B, Korkaya H, Heath AN, Clouthier SG, Wicha MS. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci USA, 2012, 109(8): 2784-2789. | [54] | Schwab LP, Peacock DL, Majumdar D, Ingels JF, Jensen LC, Smith KD, Cushing RC, Seagroves TN. Hypoxia- inducible factor 1α promotes primary tumor growth and tumor-initiating cell activity in breast cancer. Breast Cancer Res, 2012, 14: R6. | [55] | Xiang LS, Gilkes DM, Hu HX, Takano N, Luo WB, Lu HQ, Bullen JW, Samanta D, Liang HJ, Semenza GL. Hypoxia-inducible factor 1 mediates TAZ expression and nuclear localization to induce the breast cancer stem cell phenotype. Oncotarget, 2014, 5(24): 12509-12527. | [56] | Xiang LS, Gilkes DM, Hu HX, Luo WB, Bullen JW, Liang HJ, Semenza GL. HIF-1α and TAZ serve as reciprocal co-activators in human breast cancer cells. Oncotarget, 2015, 6(14): 11768-11778. | [57] | Bendinelli P, Maroni P, Matteucci E, Luzzati A, Perrucchini G, Desiderio MA. Hypoxia inducible factor-1 is activated by transcriptional co-activator with PDZ-binding motif (TAZ) versus WWdomain-containing oxidoreductase (WWOX) in hypoxic microenvironment of bone metastasis from breast cancer. Eur J Cancer, 2013, 49(11): 2608-2618. | [58] | Chan SW, Lim CJ, Guo K, Ng CP, Lee I, Hunziker W, Zeng Q, Hong WJ. A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Res, 2008, 68(8): 2592-2598. | [59] | Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, Inui M, Montagner M, Parenti AR, Poletti A, Daidone MG, Dupont S, Basso G, Bicciato S, Piccolo S. The Hippo transducer TAZ confers cancer stem cell- related traits on breast cancer cells. Cell, 2011, 147(4): 759-772. | [60] | Zhao D, Zhi X, Zhou ZM, Chen C. TAZ antagonizes the WWP1-mediated KLF5 degradation and promotes breast cell proliferation and tumorigenesis. Carcinogenesis, 2012, 33(1): 59-67. | [61] | Díaz-Martín J, López-García Má, Romero-Pérez L, Atienza-Amores MR, Pecero ML, Castilla Má, Biscuola M, Santón A, Palacios J. Nuclear TAZ expression associates with the triple-negative phenotype in breast cancer. Endocr Relat Cancer, 2015, 22(3): 443-454. | [62] | Skibinski A, Breindel JL, Prat A, Galván P, Smith E, Rolfs A, Gupta PB, Labaer J, Kuperwasser C. The Hippo transducer TAZ interacts with the SWI/SNF complex to regulate breast epithelial lineage commitment. Cell Rep, 2014, 6(6): 1059-1072. | [63] | Yang N, Morrison CD, Liu PJ, Miecznikowski J, Bshara W, Han S, Zhu Q, Omilian AR, Li X, Zhang J. TAZ induces growth factor-independent proliferation through activation of EGFR ligand amphiregulin. Cell Cycle, 2012, 11(15): 2922-2930. | [64] | Bartucci M, Dattilo R, Moriconi C, Pagliuca A, Mottolese M, Federici G, Di Benedetto A, Todaro M, Stassi G, Sperati F, Amabile MI, Pilozzi E, Patrizii M, Biffoni M, Maugeri-Saccà M, Piccolo S, De Maria R. TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene, 2015, 34(6): 681-690. | [65] | Liu R, Shi PG, Nie Z, Liang HC, Zhou ZM, Chen WL, Chen HJ, Dong C, Yang RX, Liu SL, Chen CS. Mifepristone Suppresses Basal Triple-Negative Breast Cancer Stem Cells by Down-regulating KLF5 Expression. Theranostics, 2016, 6(4): 533-544. | [66] | Lai D, Ho KC, Hao YW, Yang XL. Taxol resistance in breast cancer cells is mediated by the Hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res, 2011, 71(7): 2728-2738. | [67] | Lamar JM, Stern P, Liu H, Schindler JW, Jiang ZG, Hynes RO. The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc Natl Acad Sci USA, 2012, 109(37): E2441-E2450. | [68] | Chen Q, Zhang NL, Gray RS, Li HL, Ewald AJ, Zahnow CA, Pan DJ. A temporal requirement for Hippo signaling in mammary gland differentiation, growth, and tumorigenesis. Gene Dev, 2014, 28(5): 432-437. | [69] | Vlug EJ, Van De Ven RAH, Vermeulen JF, Bult P, Van Diest PJ, Derksen PWB. Nuclear localization of the transcriptional coactivator YAP is associated with invasive lobular breast cancer. Cell Oncol , 2013, 36(5): 375-384. | [70] | Kim SK, Jung WH, Koo JS. Yes-associated protein (YAP) is differentially expressed in tumor and stroma according to the molecular subtype of breast cancer. Int J Clin Exp Pathol, 2014, 7(6): 3224-3234. | [71] | Liu R, Dong JT, Chen C. Role of KLF5 in hormonal signaling and breast cancer development. Vitam Horm, 2013, 93: 213-225. | [72] | Zhi X, Zhao D, Zhou ZM, Liu R, Chen CS. YAP promotes breast cell proliferation and survival partially through stabilizing the KLF5 transcription factor. Am J Pathol, 2012, 180(6): 2452-2461. | [73] | Wang ZY, Wu YP, Wang HF, Zhang YQ, Mei L, Fang XX, Zhang XD, Zhang F, Chen HB, Liu Y, Jiang YY, Sun SN, Zheng Y, Li N, Huang LQ. Interplay of mevalonate and Hippo pathways regulates RHAMM transcription via YAP to modulate breast cancer cell motility. Proc Natl Acad Sci USA, 2014, 111(1): E89-E98. | [74] | Shi PG, Feng J, Chen CS. Hippo pathway in mammary gland development and breast cancer. Acta Biochim Biophys Sin (Shanghai), 2015, 47(1): 53-59. | [75] | Adler JJ, Johnson DE, Heller BL, Bringman LR, Ranahan WP, Conwell MD, Sun Y, Hudmon A, Wells CD. Serum deprivation inhibits the transcriptional co-activator YAP and cell growth via phosphorylation of the 130-kDa isoform of Angiomotin by the LATS1/2 protein kinases. Proc Natl Acad Sci USA, 2013, 110(43): 17368-17373. | [76] | Arash E H, Shiban A, Song SY, Attisano L. MARK4 inhibits Hippo signaling to promote proliferation and migration of breast cancer cells. EMBO Rep, 2017, 18(3): 420-436. | [77] | Li CL, Wang SY, Xing Z, Lin AF, Liang K, Song J, Hu QS, Yao J, Chen ZY, Park PK, Hawke DH, Zhou JW, Zhou Y, Zhang SX, Liang H, Hung MC, Gallick GE, Han L, Lin CR, Yang LQ. A ROR1-HER3-lncRNA signalling axis modulates the Hippo-YAP pathway to regulate bone metastasis. Nat Cell Biol, 2017, 19(2): 106-119. | [78] | Habbig S, Bartram MP, Müller RU, Schwarz R, Andriopoulos N, Chen SH, S?gmüller JG, Hoehne M, Burst V, Liebau MC, Reinhardt HC, Benzing T, Schermer B. NPHP4, a cilia-associated protein, negatively regulates the Hippo pathway. J Cell Biol, 2011, 193(4): 633-642. | [79] | Habbig S, Bartram MP, S?gmüller JG, Griessmann A, Franke M, Müller RU, Schwarz R, Hoehne M, Bergmann C, Tessmer C, Reinhardt HC, Burst V, Benzing T, Schermer B. The ciliopathy disease protein NPHP9 promotes nuclear delivery and activation of the oncogenic transcriptional regulator TAZ. Hum Mol Genet, 2012, 21(26): 5528-5538. | [80] | Mi W, Lin Q, Childress C, Sudol M, Robishaw J, Berlot CH, Shabahang M, Yang W. Geranylgeranylation signals to the Hippo pathway for breast cancer cell proliferation and migration. Oncogene, 2015, 34(24): 3095-3106. | [81] | Serrano I, McDonald PC, Lock F, Muller WJ, Dedhar S. Inactivation of the Hippo tumour suppressor pathway by integrin-linked kinase. Nat Commun, 2013, 4: 2976. | [82] | Marastoni S, Andreuzzi E, Paulitti A, Colladel R, Pellicani R, Todaro F, Schiavinato A, Bonaldo P, Colombatti A, Mongiat M. EMILIN2 down-modulates the Wnt signalling pathway and suppresses breast cancer cell growth and migration. J Pathol, 2014, 232(4): 391-404. | [83] | Hiemer SE, Szymaniak AD, Varelas X. The transcriptional regulators TAZ and YAP direct transforming growth factor β-induced tumorigenic phenotypes in breast cancer cells. J Biol Chem, 2014, 289(19): 13461-13474. | [84] | Sorrentino G, Ruggeri N, Zannini A, Ingallina E, Bertolio R, Marotta C, Neri C, Cappuzzello E, Forcato M, Rosato A, Mano M, Bicciato S, Del Sal G. Glucocorticoid receptor signalling activates YAP in breast cancer. Nat Commun, 2017, 8: 14073. | [85] | Liu J, Li J, Li PP, Wang YC, Liang ZY, Jiang YN, Li J, Feng C, Wang RQ, Chen H, Zhou C, Zhang JM, Yang J, Liu PJ. Loss of DLG5 promotes breast cancer malignancy by inhibiting the Hippo signaling pathway. Sci Rep, 2017, 7: 42125. | [86] | Su X, Napoli M, Abbas HA, Venkatanarayan A, Bui NHB, Coarfa C, Gi YJ, Kittrell F, Gunaratne PH, Medina D, Rosen JM, Behbod F, Flores ER. TAp63 suppresses mammary tumorigenesis through regulation of the Hippo pathway. Oncogene, 2016, 36(17): 2377-2393. | [87] | Chang SS, Yamaguchi H, Xia W, Lim SO, Khotskaya Y, Wu Y, Chang WC, Liu Q, Hung MC. Aurora A kinase activates YAP signaling in triple-negative breast cancer. Oncogene, 2017, 36(9): 1265-1275. | [88] | Yuan M, Tomlinson V, Lara R, Holliday D, Chelala C, Harada T, Gangeswaran R, Manson-Bishop C, Smith P, Danovi SA, Pardo O, Crook T, Mein CA, Lemoine NR, Jones LJ, Basu S. Yes-associated protein (YAP) functions as a tumor suppressor in breast. Cell Death Differ, 2008, 15(11): 1752-1759. | [89] | Yu SJ, Hu JY, Kuang XY, Luo JM, Hou YF, Di GH, Wu J, Shen ZZ, Song HY, Shao ZM. MicroRNA-200a promotes anoikis resistance and metastasis by targeting YAP1 in human breast cancer. Clin Cancer Res, 2013, 19(6): 1389-1399. | [90] | Matallanas D, Romano D, Yee K, Meissl K, Kucerova L, Piazzolla D, Baccarini M, Vass JK, Kolch W, O'Neill E. RASSF1A elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the p73 tumor suppressor protein. Mol Cell, 2007, 27(6): 962-975. | [91] | Takahashi Y, Miyoshi Y, Takahata C, Irahara N, Taguchi T, Tamaki Y, Noguchi S. Down-regulation of LATS1 and LATS2 mRNA expression by promoter hypermethylation and its association with biologically aggressive phenotype in human breast cancers. Clin Cancer Res, 2005, 11(4): 1380-1385. | [92] | Britschgi A, Duss S, Kim S, Couto JP, Brinkhaus H, Koren S, De Silva D, Mertz KD, Kaup D, Varga Z, Voshol H, Vissieres A, Leroy C, Roloff T, Stadler MB, Scheel CH, Miraglia LJ, Orth AP, Bonamy GM, Reddy VA, Bentires-Alj M. The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERα. Nature, 2017, 541(7638): 541-545. | [93] | Sudol M, Shields DC, Farooq A. Structures of YAP protein domains reveal promising targets for development of new cancer drugs. Semin Cell Dev Biol, 2012, 23(7): 827-833. | [94] | Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ, Anders RA, Liu JO, Pan DJ. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev, 2012, 26(12): 1300-1305. | [95] | Feng X, Degese MS, Iglesias-Bartolome R, Vaque JP, Molinolo AA, Rodrigues M, Zaidi MR, Ksander BR, Merlino G, Sodhi A, Chen Q, Gutkind JS. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell, 2014, 25(6):831-845. | [96] | Zhang HB, Ramakrishnan SK, Triner D, Centofanti B, Maitra D, Gy?rffy B, Sebolt-Leopold JS, Dame MK, Varani J, Brenner DE, Fearon ER, Omary MB, Shah YM. Tumor-selective proteotoxicity of verteporfin inhibits colon cancer progression independently of YAP1. Sci Signal, 2015, 8(397): 98. | [97] | Jiao S, Wang HZ, Shi ZB, Dong AM, Zhang WJ, Song XM, He F, Wang YC, Zhang ZZ, Wang WJ, Wang X, Guo T, Li PX, Zhao Y, Ji H, Zhang L, Zhou ZC. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell, 2014, 25(2): 166-180. | [98] | Zhang WJ, Gao YJ, Li PX, Shi ZB, Guo T, Li F, Han XK, Feng Y, Zheng C, Wang ZY, Li FM, Chen H, Zhou ZC, Zhang L, Ji HB. VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex. Cell Res, 2014, 24(3): 331-343. |
|