[1] | Pan DJ. Hippo signaling in organ size control. Genes Dev, 2007, 21(8): 886-897. | [2] | Zhao B, Lei QY, Guan KL. The Hippo-YAP pathway: new connections between regulation of organ size and cancer. Curr Opin Cell Biol, 2008, 20(6): 638-646. | [3] | Zhao B, Li L, Lei QY, Guan KL. The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev, 2010, 24(9): 862-874. | [4] | Zhao B, Tumaneng K, Guan KL. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol, 2011, 13(8): 877-883. | [5] | Saucedo LJ, Edgar BA. Filling out the Hippo pathway. Nat Rev Mol Cell Biol, 2007, 8(8): 613-621. | [6] | Zhang L, Yue T, Jiang J. Hippo signaling pathway and organ size control. Fly, 2009, 3(1): 68-73. | [7] | Harvey KF, Pfleger CM, Hariharan IK. The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell, 2003, 114(4): 457-467. | [8] | Jia JH, Zhang WS, Wang B, Trinko R, Jiang J. The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev, 2003, 17(20): 2514-2519. | [9] | Pantalacci S, Tapon N, Léopold P. The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat Cell Biol, 2003, 5(10): 921-927. | [10] | Udan RS, Kango-Singh M, Nolo R, Tao CY, Halder G. Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol, 2003, 5(10): 914-920. | [11] | Lai ZC, Wei XM, Shimizu T, Ramos E, Rohrbaugh M, Nikolaidis N, Ho LL, Li Y. Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell, 2005, 120(5): 675-685. | [12] | Justice RW, Zilian O, Woods DF, Noll M, Bryant PJ. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev, 1995, 9(5): 534-546. | [13] | Xu T, Wang W, Zhang S, Stewart RA, Yu W. Identifying tumor suppressors in genetic mosaics: the Drosophila Lats gene encodes a putative protein kinase. Development, 1995, 121(4): 1053-1063. | [14] | Kango-Singh M, Nolo R, Tao CY, Verstreken P, Hiesinger PR, Bellen HJ, Halder G. Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development, 2002, 129(24): 5719-5730. | [15] | Tapon N, Harvey KF, Bell DW, Wahrer DCR, Schiripo TA, Haber DA, Hariharan IK. Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell, 2002, 110(4): 467-478. | [16] | Wu SA, Huang JB, Dong JX, Pan DJ. Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell, 2003, 114(4): 445-456. | [17] | Huang JB, Wu SA, Barrera J, Matthews K, Pan DJ. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell, 2005, 122(3): 421-434. | [18] | Wei XM, Shimizu T, Lai ZC. Mob as tumor suppressor is activated by Hippo kinase for growth inhibition in Drosophila. EMBO J, 2007, 26(7): 1772-1781. | [19] | Chan EHY, Nousiainen M, Chalamalasetty RB, Sch?fer A, Nigg EA, Silljé HHW. The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene, 2005, 24(12): 2076-2086. | [20] | Hirabayashi S, Nakagawa K, Sumita K, Hidaka S, Kawai T, Ikeda M, Kawata A, Ohno K, Hata Y. Threonine 74 of MOB1 is a putative key phosphorylation site by MST2 to form the scaffold to activate nuclear Dbf2-related kinase 1. Oncogene, 2008, 27(31): 4281-4292. | [21] | Praskova M, Xia F, Avruch J. MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Curr Biol, 2008, 18(5): 311-321. | [22] | Zhang L, Ren FF, Zhang Q, Chen YB, Wang B, Jiang J. The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev Cell, 2008, 14(3): 377-387. | [23] | Dong JX, Feldmann G, Huang JB, Wu SA, Zhang NL, Comerford SA, Gayyed MF, Anders RA, Maitra A, Pan DJ. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell, 2007, 130(6): 1120-1133. | [24] | Zhao B, Wei XM, Li WQ, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu JD, Li L, Zheng P, Ye KQ, Chinnaiyan A, Halder G, Lai ZC, Guan KL. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev, 2007, 21(21): 2747-2761. | [25] | Lei QY, Zhang H, Zhao B, Zha ZY, Bai F, Pei XH, Zhao SM, Xiong Y, Guan KL. TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol Cell Biol, 2008, 28(7): 2426-2436. | [26] | Liu CY, Zha ZY, Zhou X, Zhang H, Huang W, Zhao D, Li TT, Chan SW, Lim CJ, Hong W, Zhao SM, Xiong Y, Lei QY, Guan KL. The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF β-TrCP E3 ligase. J Biol Chem, 2010, 285(48): 37159-37169. | [27] | Zhao B, Li L, Tumaneng K, Wang CY, Guan KL. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF β-TRCP. Genes Dev, 2010, 24(1): 72-85. | [28] | Yu FX, Guan KL. The Hippo pathway: regulators and regulations. Genes Dev, 2013, 27(4): 355-371. | [29] | Johnson R, Halder G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov, 2014, 13(1): 63-79. | [30] | Lawrence PA, Casal J. The mechanisms of planar cell polarity, growth and the Hippo pathway: some known unknowns. Dev Biol, 2013, 377(1): 1-8. | [31] | Schroeder MC, Halder G. Regulation of the Hippo pathway by cell architecture and mechanical signals. Semin Cell Dev Biol, 2012, 23(7): 803-811. | [32] | Halder G, Dupont S, Piccolo S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol, 2012, 13(9): 591-600. | [33] | Attisano L, Wrana JL. Signal integration in TGF-β, WNT, and Hippo pathways. F1000Prime Rep, 2013, 5: 17. | [34] | Bernascone I, Martin-Belmonte F. Crossroads of Wnt and Hippo in epithelial tissues. Trends Cell Biol, 2013, 23(8): 380-389. | [35] | Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM, Dembowy J, Yaffe MB, Zandstra PW, Wrana JL. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol, 2008, 10(7): 837-848. | [36] | Rouleau GA, Merel P, Lutchman M, Sanson M, Zucman J, Marineau C, Hoang-Xuan K, Demczuk S, Desmaze C, Plougastel B, Pulst SM, Lenoir G, Bijlsma E, Fashold R, Dumanski J, Jong PD, Parry D, Eldrige R, Aurias A, Delattre O, Thomas G. Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2 Nature, 1993, 363(6429): 515-521. | [37] | Trofatter JA, MacCollin MM, Rutter JL, Murrell JR, Duyao MP, Parry DM, Eldridge R, Kley N, Menon AG, Pulaski K, Haase VH, Ambrose CM, Munroe D, Bove C, Haines JL, Martuza RL, MacDonald ME, Seizinger BR, Short MP, Buckler AJ, Gusella JF. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell, 1993, 72(5): 791-800. | [38] | Yin F, Yu JZ, Zheng YG, Chen Q, Zhang NL, Pan DJ. Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2. Cell, 2013, 154(6): 1342-1355. | [39] | Pearson MA, Reczek D, Bretscher A, Karplus PA. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell, 2000, 101(3): 259-270. | [40] | Li QZ, Nance MR, Kulikauskas R, Nyberg K, Fehon R, Karplus PA, Bretscher A, Tesmer JJG. Self-masking in an intact ERM-merlin protein: an active role for the central α-helical domain. J Mol Biol, 2007, 365(5): 1446-1459. | [41] | Gonzalez-Agosti C, Wiederhold T, Herndon ME, Gusella J, Ramesh V. Interdomain interaction of merlin isoforms and its influence on intermolecular binding to NHE-RF. J Biol Chem, 1999, 274(48): 34438-34442. | [42] | Sher I, Hanemann CO, Karplus PA, Bretscher A. The tumor suppressor merlin controls growth in its open state, and phosphorylation converts it to a less-active more-closed state. Dev Cell, 2012, 22(4): 703-705. | [43] | Li YJ, Zhou H, Li FZ, Chan SW, Lin ZJ, Wei ZY, Yang Z, Guo FS, Lim CJ, Xing WC, Shen YQ, Hong WJ, Long JF, Zhang MJ. Angiomotin binding-induced activation of Merlin/NF2 in the Hippo pathway. Cell Res, 2015, 25(7): 801-817. | [44] | Creasy CL, Ambrose DM, Chernoff J. The Ste20-like protein kinase, Mst1, dimerizes and contains an inhibitory domain. J Biol Chem, 1996, 271(35): 21049-21053. | [45] | Scheel H, Hofmann K. A novel inter action motif, SARAH, connects three classes of tumor suppressor. Curr Biol, 2003, 13(23): R899-R900. | [46] | Valverde P. Cloning, expression, and mapping of hWW45, a novel human WW domain-containing gene. Biochem Biophys Res Commun, 2000, 276(3): 990-998. | [47] | Ni LS, Li S, Yu JZ, Min JK, Brautigam CA, Tomchick DR, Pan DJ, Luo XL. Structural basis for autoactivation of human Mst2 kinase and its regulation by RASSF5. Structure, 2013, 21(10): 1757-1768. | [48] | Record CJ, Chaikuad A, Rellos P, Das S, Pike ACW, Fedorov O, Marsden BD, Knapp S, Lee WH. Structural comparison of human mammalian Ste20-like kinases. PLoS One, 2010, 5(8): e11905. | [49] | Shi ZB, Jiao S, Zhang Z, Ma M, Zhang Z, Chen CC, Wang K, Wang HZ, Wang WJ, Zhang L, Zhao Y, Zhou ZC. Structure of the MST4 in complex with MO25 provides insights into its activation mechanism. Structure, 2013, 21(3): 449-461. | [50] | Lee SJ, Cobb MH, Goldsmith EJ. Crystal structure of domain-swapped STE20 OSR1 kinase domain. Protein Sci, 2009, 18(2): 304-313. | [51] | Hwang E, Ryu KS, P??kk?nen K, Güntert P, Cheong HK, Lim DS, Lee JO, Jeon YH, Cheong C. Structural insight into dimeric interaction of the SARAH domains from Mst1 and RASSF family proteins in the apoptosis pathway. Proc Natl Acad Sci USA, 2007, 104(22): 9236-9241. | [52] | Constantinescu Aruxandei D, Makbul C, Koturenkiene A, Ludemann MB, Herrmann C. Dimerization-induced folding of MST1 SARAH and the influence of the intrinsically unstructured inhibitory domain: low thermodynamic stability of monomer. Biochemistry, 2011, 50(51): 10990-11000. | [53] | de Souza PM, Lindsay MA. Mammalian Sterile20-like kinase 1 and the regulation of apoptosis. Biochem Soc Trans, 2004, 32(3): 485-488. | [54] | Oh HJ, Lee KK, Song SJ, Jin MS, Song MS, Lee JH, Im CR, Lee JO, Yonehara S, Lim DS. Role of the tumor suppressor RASSF1A in Mst1-mediated apoptosis. Cancer Res, 2006, 66(5): 2562-2569. | [55] | Khokhlatchev A, Rabizadeh S, Xavier R, Nedwidek M, Chen T, Zhang XF, Seed B, Avruch J. Identification of a novel Ras-regulated proapoptotic pathway. Curr Biol, 2002, 12(4): 253-265. | [56] | Katagiri K, Imamura M, Kinashi T. Spatiotemporal regulation of the kinase Mst1 by binding protein RAPL is critical for lymphocyte polarity and adhesion. Nat Immunol, 2006, 7(9): 919-928. | [57] | Volodko N, Gordon M, Salla M, Ghazaleh HA, Baksh S. RASSF tumor suppressor gene family: biological functions and regulation. FEBS Lett, 2014, 588(16): 2671-2684. | [58] | Richter AM, Pfeifer GP, Dammann RH. The RASSF proteins in cancer; from epigenetic silencing to functional characterization. Biochim Biophys Acta, 2009, 1796(2): 114-128. | [59] | Praskova M, Khoklatchev A, Ortiz-Vega S, Avruch J. Regulation of the MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and NORE1, and by Ras. Biochem J, 2004, 381(2): 453-462. | [60] | Makbul C, Constantinescu Aruxandei D, Hofmann E, Schwarz D, Wolf E, Herrmann C. Structural and thermodynamic characterization of Nore1-SARAH: a small, helical module important in signal transduction networks. Biochemistry, 2013, 52(6): 1045-1054. | [61] | Hwang E, Cheong HK, Mushtaq AU, Kim HY, Yeo KJ, Kim E, Lee WC, Hwang KY, Cheong C, Jeon YH. Structural basis of the heterodimerization of the MST and RASSF SARAH domains in the Hippo signalling pathway. Acta Crystallogr D Biol Crystallogr, 2014, 70(7): 1944-1953. | [62] | Liu GG, Shi ZB, Jiao S, Zhang ZZ, Wang WJ, Chen CC, Hao Q, Zhang M, Feng M, Xu L, Zhang Z, Zhou ZC, Zhang M. Structure of MST2 SARAH domain provides insights into its interaction with RAPL. J Struct Biol, 2014, 185(3): 366-374. | [63] | Matallanas D, Romano D, Yee K, Meissl K, Kucerova L, Piazzolla D, Baccarini M, Vass JK, Kolch W, O'Neill E. RASSF1A elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the p73 tumor suppressor protein. Mol Cell, 2007, 27(6): 962-975. | [64] | Guo C, Tommasi S, Liu LM, Yee JK, Dammann R, Pfeifer GP. RASSF1A is part of a complex similar to the Drosophila Hippo/Salvador/Lats tumor-suppressor network. Curr Biol, 2007, 17(8): 700-705. | [65] | Callus BA, Verhagen AM, Vaux DL. Association of mammalian sterile twenty kinases, Mst1 and Mst2, with hSalvador via C-terminal coiled-coil domains, leads to its stabilization and phosphorylation. FEBS J, 2006, 273(18): 4264-4276. | [66] | Bork P, Sudol M. The WW domain: a signalling site in dystrophin? Trends Biochem Sci, 1994, 19(12): 531-533. | [67] | Ohnishi S, Güntert P, Koshiba S, Tomizawa T, Akasaka R, Tochio N, Sato M, Inoue M, Harada T, Watanabe S, Tanaka A, Shirouzu M, Kigawa T, Yokoyama S. Solution structure of an atypical WW domain in a novel β-clam-like dimeric form. FEBS Lett, 2007, 581(3): 462-468. | [68] | Stavridi ES, Harris KG, Huyen Y, Bothos J, Verwoerd PM, Stayrook SE, Pavletich NP, Jeffrey PD, Luca FC. Crystal structure of a human Mob1 protein: toward understanding Mob-regulated cell cycle pathways. Structure, 2003, 11(9): 1163-1170. | [69] | Ponchon L, Dumas C, Kajava AV, Fesquet D, Padilla A. NMR solution structure of Mob1, a mitotic exit network protein and its interaction with an NDR kinase peptide. J Mol Biol, 2004, 337(1): 167-182. | [70] | Mrkobrada S, Boucher L, Ceccarelli D, Tyers M, Sicheri F. Structural and functional analysis of Saccharomyces cerevisiae Mob1. J Mol Biol, 2006, 362(3): 430-440. | [71] | Ni LS, Zheng YG, Hara M, Pan DJ, Luo XL. Structural basis for Mob1-dependent activation of the core Mst-Lats kinase cascade in Hippo signaling. Genes Dev, 2015, 29(13): 1416-1431. | [72] | Pearce LR, Komander D, Alessi DR. The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol, 2010, 11(1): 9-22. | [73] | Bichsel SJ, Tamaskovic R, Stegert MR, Hemmings BA. Mechanism of activation of NDR (nuclear Dbf2-related) protein kinase by the hMOB1 protein. J Biol Chem, 2004, 279(34): 35228-35235. | [74] | Hergovich A, Schmitz D, Hemmings BA. The human tumour suppressor LATS1 is activated by human MOB1 at the membrane. Biochem Biophys Res Commun, 2006, 345(1): 50-58. | [75] | Park HW, Guan KL. Regulation of the Hippo pathway and implications for anticancer drug development. Trends Pharmacol Sci, 2013, 34(10): 581-589. | [76] | Sudol M, Harvey KF. Modularity in the Hippo signaling pathway. Trends Biochem Sci, 2010, 35(11): 627-633. | [77] | Hergovich A. Mammalian Hippo signalling: a kinase network regulated by protein-protein interactions. Biochem Soc Trans, 2012, 40(1): 124-128. | [78] | Hao YW, Chun A, Cheung K, Rashidi B, Yang XL. Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem, 2008, 283(9): 5496-5509. | [79] | Macias MJ, Hyv?nen M, Baraldi E, Schultz J, Sudol M, Saraste M, Oschkinat H. Structure of the WW domain of a kinase-associated protein complexed with a proline- rich peptide. Nature, 1996, 382(6592): 646-649. | [80] | Pires JR, Taha-Nejad F, Toepert F, Ast T, Hoffmüller U, Schneider-Mergener J, Kühne R, Macias MJ, Oschkinat H. Solution structures of the YAP65 WW domain and the variant L30 K in complex with the peptides GTPPPPYTVG, N-(n-octyl)-GPPPY and PLPPY and the application of peptide libraries reveal a minimal binding epitope. J Mol Biol, 2001, 314(5): 1147-1156. | [81] | Aragón E, Goerner N, Zaromytidou AI, Xi QR, Escobedo A, Massagué J, Macias MJ. A Smad action turnover switch operated by WW domain readers of a phosphoserine code. Genes Dev, 2011, 25(12): 1275-1288. | [82] | Webb C, Upadhyay A, Giuntini F, Eggleston I, Furutani-Seiki M, Ishima R, Bagby S. Structural features and ligand binding properties of tandem WW domains from YAP and TAZ, nuclear effectors of the Hippo pathway. Biochemistry, 2011, 50(16): 3300-3309. | [83] | Sudol M, Shields DC, Farooq A. Structures of YAP protein domains reveal promising targets for development of new cancer drugs. Semin Cell Dev Biol, 2012, 23(7): 827-833. | [84] | Aragón E, Goerner N, Xi QR, Gomes T, Gao S, Massagué J, Macias MJ. Structural basis for the versatile interactions of Smad7 with regulator WW domains in TGF-β pathways. Structure, 2012, 20(10): 1726-1736. | [85] | Schumacher B, Skwarczynska M, Rose R, Ottmann C. Structure of a 14-3-3σ-YAP phosphopeptide complex at 1.15 ? resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2010, 66(9): 978-984. | [86] | Andrianopoulos A, Timberlake WE. ATTS, a new and conserved DNA binding domain. Plant Cell, 1991, 3(8): 747-748. | [87] | Bürglin TR. The TEA domain: a novel, highly conserved DNA-binding motif. Cell, 1991, 66(1): 11-12. | [88] | Vassilev A, Kaneko KJ, Shu HJ, Zhao YM, DePamphilis ML. TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev, 2001, 15(10): 1229-1241. | [89] | Chen LM, Chan SW, Zhang XQ, Walsh M, Lim CJ, Hong WJ, Song HW. Structural basis of YAP recognition by TEAD4 in the hippo pathway. Genes Dev, 2010, 24(3): 290-300. | [90] | Li Z, Zhao B, Wang P, Chen F, Dong ZH, Yang HR, Guan KL, Xu YH. Structural insights into the YAP and TEAD complex. Genes Dev, 2010, 24(3): 235-240. | [91] | Tian W, Yu JZ, Tomchick DR, Pan DJ, Luo XL. Structural and functional analysis of the YAP-binding domain of human TEAD2. Proc Natl Acad Sci USA, 2010, 107(16): 7293-7298. | [92] | Halder G, Polaczyk P, Kraus ME, Hudson A, Kim J, Laughon A, Carroll S. The Vestigial and Scalloped proteins act together to directly regulate wing-specific gene expression in Drosophila. Genes Dev, 1998, 12(24): 3900-3909. | [93] | Paumard-Rigal S, Zider A, Vaudin P, Silber J. Specific interactions between vestigial and scalloped are required to promote wing tissue proliferation in Drosophila melanogaster. Dev Genes Evol, 1998, 208(8): 440-446. | [94] | Simmonds AJ, Liu XF, Soanes KH, Krause HM, Irvine KD, Bell JB. Molecular interactions between Vestigial and Scalloped promote wing formation in Drosophila. Genes Dev, 1998, 12(24): 3815-3820. | [95] | Guss KA, Nelson CE, Hudson A, Kraus ME, Carroll SB. Control of a genetic regulatory network by a selector gene. Science, 2001, 292(5519): 1164-1167. | [96] | Chen HH, Mullett SJ, Stewart AFR. Vgl-4, a novel member of the vestigial-like family of transcription cofactors, regulates α1-adrenergic activation of gene expression in cardiac myocytes. J Biol Chem, 2004, 279(29): 30800-30806. | [97] | Maeda T, Chapman DL, Stewart AFR. Mammalian vestigial-like 2, a cofactor of TEF-1 and MEF2 transcription factors that promotes skeletal muscle differentiation. J Biol Chem, 2002, 277(50): 48889-48898. | [98] | Günther S, Mielcarek M, Krüger M, Braun T. VITO-1 is an essential cofactor of TEF1-dependent muscle-specific gene regulation. Nucleic Acids Res, 2004, 32(2): 791-802. | [99] | Jiao S, Wang HZ, Shi ZB, Dong AM, Zhang WJ, Song XM, He F, Wang YC, Zhang ZZ, Wang WJ, Wang X, Guo T, Li PX, Zhao Y, Ji HB, Zhang L, Zhou ZC. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell, 2014, 25(2): 166-180. | [100] | Guo T, Lu Y, Li PX, Yin MX, Lv DK, Zhang WJ, Wang HZ, Zhou ZC, Ji HB, Zhao Y, Zhang L. A novel partner of Scalloped regulates Hippo signaling via antagonizing Scalloped-Yorkie activity. Cell Res, 2013, 23(10): 1201-1214. | [101] | Zhang WJ, Gao YJ, Li PX, Shi ZB, Guo T, Li F, Han XK, Feng Y, Zheng C, Wang ZY, Li FM, Chen HQ, Zhou ZC, Zhang L, Ji HB. VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex. Cell Res, 2014, 24(3): 331-343. | [102] | Koontz LM, Liu-Chittenden Y, Yin F, Zheng YG, Yu JZ, Huang B, Chen Q, Wu SA, Pan DJ. The Hippo effector Yorkie controls normal tissue growth by antagonizing scalloped-mediated default repression. Dev Cell, 2013, 25(4): 388-401. | [103] | Pobbati AV, Hong WJ. Emerging roles of TEAD transcription factors and its coactivators in cancers. Cancer Biol Ther, 2013, 14(5): 390-398. | [104] | Mielcarek M, Piotrowska I, Schneider A, Günther S, Braun T. VITO-2, a new SID domain protein, is expressed in the myogenic lineage during early mouse embryonic development. Gene Expr Patterns, 2009, 9(3): 129-137. | [105] | Hélias-Rodzewicz Z, Pérot G, Chibon F, Ferreira C, Lagarde P, Terrier P, Coindre JM, Aurias A. YAP1 and VGLL3, encoding two cofactors of TEAD transcription factors, are amplified and overexpressed in a subset of soft tissue sarcomas. Genes Chromosomes Cancer, 2010, 49(12): 1161-1171. | [106] | Gambaro K, Quinn MCJ, Wojnarowicz PM, Arcand SL, de Ladurantaye M, Barrès V, Ripeau JS, Killary AM, Davis EC, Lavoie J, Provencher DM, Mes-Masson AM, Chevrette M, Tonin PN. VGLL3 expression is associated with a tumor suppressor phenotype in epithelial ovarian cancer. Mol Oncol, 2013, 7(3): 513-530. | [107] | Vaudin P, Delanoue R, Davidson I, Silber J, Zider A. TONDU (TDU), a novel human protein related to the product of vestigial (vg) gene of Drosophila melanogaster interacts with vertebrate TEF factors and substitutes for Vg function in wing formation. Development, 1999, 126(21): 4807-4816. | [108] | Pobbati AV, Chan SW, Lee I, Song HW, Hong WJ. Structural and functional similarity between the Vgll1- TEAD and the YAP-TEAD complexes. Structure, 2012, 20(7): 1135-1140. | [109] | Mar JH, Ordahl CP. M-CAT binding factor, a novel trans-acting factor governing muscle-specific transcription. Mol Cell Biol, 1990, 10(8): 4271-4283. | [110] | Anbanandam A, Albarado DC, Nguyen CT, Halder G, Gao XL, Veeraraghavan S. Insights into transcription enhancer factor 1 (TEF-1) activity from the solution structure of the TEA domain. Proc Natl Acad Sci USA, 2006, 103(46): 17225-17230. | [111] | Lee DS, Vonrhein C, Albarado D, Raman C, Veeraraghavan S. A potential structural switch for regulating DNA-binding by TEAD transcription factors. J Mol Biol, 2016, 428(12): 2557-2568. | [112] | Shi Z, He F, Chen M, Hua L, Wang W, Jiao S, Zhou ZC. DNA-binding mechanism of the Hippo pathway transcription factor TEAD4. Oncogene, 2017, doi: 10.1038/ onc.2017.24. | [113] | Bao YJ, Nakagawa K, Yang ZY, Ikeda M, Withanage K, Ishigami-Yuasa M, Okuno Y, Hata S, Nishina H, Hata Y. A cell-based assay to screen stimulators of the Hippo pathway reveals the inhibitory effect of dobutamine on the YAP-dependent gene transcription. J Biochem, 2011, 150(2): 199-208. | [114] | Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ, Anders RA, Liu JO, Pan DJ. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev, 2012, 26(12): 1300-1305. | [115] | Jiao S, Li CC, Hao Q, Miao HF, Zhang L, Li L, Zhou ZC. VGLL4 targets a TCF4-TEAD4 complex to coregulate Wnt and Hippo signalling in colorectal cancer. Nat Commun, 2017, 8: 14058. | [116] | Fan FQ, He ZX, Kong LL, Chen QH, Yuan Q, Zhang SH, Ye JJ, Liu H, Sun XF, Geng J, Yuan LZ, Hong LX, Xiao C, Zhang WJ, Sun XH, Li YZ, Wang P, Huang LH, Wu XR, Ji ZL, Wu Q, Xia NS, Gray NS, Chen LF, Yun CH, Deng XM, Zhou DW. Pharmacological targeting of kinases MST1 and MST2 augments tissue repair and regeneration. Sci Transl Med, 2016, 8(352): 352ra108. | [117] | Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH, Zhao JG, Yuan HX, Tumaneng K, Li HR, Fu XD, Mills GB, Guan KL. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell, 2012, 150(4): 780-791. | [118] | Ponnusamy S, Selvam SP, Mehrotra S, Kawamori T, Snider AJ, Obeid LM, Shao Y, Sabbadini R, Ogretmen B. Communication between host organism and cancer cells is transduced by systemic sphingosine kinase 1/sphingosine 1-phosphate signalling to regulate tumour metastasis. EMBO Mol Med, 2012, 4(8): 761-775. | [119] | Cuvillier O, Ader I, Bouquerel P, Brizuela L, Malavaud B, Mazerolles C, Rischmann P. Activation of sphingosine kinase-1 in cancer: implications for therapeutic targeting. Curr Mol Pharmacol, 2010, 3(2): 53-65. | [120] | Kelly MG, Mor G, Husband A, O'Malley DM, Baker L, Azodi M, Schwartz PE, Rutherford TJ. Phase II evaluation of phenoxodiol in combination with cisplatin or paclitaxel in women with platinum/taxane-refractory/resistant epithelial ovarian, fallopian tube, or primary peritoneal cancers. Int J Gynecol Cancer, 2011, 21(4): 633-639. | [121] | Jiang GW, Xu Y, Fujiwara Y, Tsukahara T, Tsukahara R, Gajewiak J, Tigyi G, Prestwich GD. α-Substituted phosphonate analogues of lysophosphatidic acid (LPA) selectively inhibit production and action of LPA. ChemMedChem, 2007, 2(5): 679-690. | [122] | Yu FX, Zhang YF, Park HW, Jewell JL, Chen Q, Deng YT, Pan DJ, Taylor SS, Lai ZC, Guan KL. Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation. Genes Dev, 2013, 27(11): 1223-1232. | [123] | Savai R, Pullamsetti SS, Banat GA, Weissmann N, Ghofrani HA, Grimminger F, Schermuly RT. Targeting cancer with phosphodiesterase inhibitors. Expert Opin Investig Drugs, 2010, 19(1): 117-131. | [124] | Kim M, Kim M, Lee S, Kuninaka S, Saya H, Lee H, Lee S, Lim DS. cAMP/PKA signalling reinforces the LATS- YAP pathway to fully suppress YAP in response to actin cytoskeletal changes. EMBO J, 2013, 32(11): 1543-1555. | [125] | D'Orazio JA, Nobuhisa T, Cui RT, Arya M, Spry M, Wakamatsu K, Igras V, Kunisada T, Granter SR, Nishimura EK, Ito S, Fisher DE. Topical drug rescue strategy and skin protection based on the role of Mc1r in UV-induced tanning. Nature, 2006, 443(7109): 340-344. | [126] | Li ZH, Wang JZ. A forskolin derivative, FSK88, induces apoptosis in human gastric cancer BGC823 cells through caspase activation involving regulation of Bcl-2 family gene expression, dissipation of mitochondrial membrane potential and cytochrome c release. Cell Biol Int, 2006, 30(11): 940-946. | [127] | Sun B, Geng S, Huang XJ, Zhu J, Liu S, Zhang YJ, Ye J, Li YJ, Wang JZ. Coleusin factor exerts cytotoxic activity by inducing G0/G1 cell cycle arrest and apoptosis in human gastric cancer BGC-823 cells. Cancer Lett, 2011, 301(1): 95-105. | [128] | Goldhoff P, Warrington NM, Limbrick DD Jr, Hope A, Woerner BM, Jackson E, Perry A, Piwnica-Worms D, Rubin JB. Targeted inhibition of cyclic AMP phosphodiesterase-4 promotes brain tumor regression. Clin Cancer Res, 2008, 14(23): 7717-7725. |
|