遗传 ›› 2019, Vol. 41 ›› Issue (11): 1009-1022.doi: 10.16288/j.yczz.19-177
林春1,2,刘正杰1,2,董玉梅2,MichelVales3,毛自朝1,2()
收稿日期:
2019-06-17
修回日期:
2019-10-11
出版日期:
2019-11-20
发布日期:
2019-11-08
通讯作者:
毛自朝
E-mail:mao2010zichao@126.com
作者简介:
林春,博士,副教授,研究方向:藜麦分子生物学。E-mail: 基金资助:
Chun Lin1,2,Zhengjie Liu1,2,Yumei Dong2,Michel Vales3,Zichao Mao1,2()
Received:
2019-06-17
Revised:
2019-10-11
Online:
2019-11-20
Published:
2019-11-08
Contact:
Mao Zichao
E-mail:mao2010zichao@126.com
Supported by:
摘要:
藜麦(Chenopodium quinoa Willd.)起源于南美洲提提喀喀湖区,是苋科(Amaranthaceae)藜属(Chenopodium)一年生作物。因其营养全面且对多种非生物逆境胁迫具有抗性,被认为是尚未被充分开发且具有高应用潜力的作物,深受育种学家的关注。近年来,随着人们对健康的关注和高品质生活的追求,对藜麦的需求量急剧增加,加之藜麦能有效缓解全球粮食安全,对其栽培与育种等研究已成为热点。为了加深对藜麦的认识和推动其产业的发展,本文结合本课题组多年来对源于安第斯山藜麦种质资源的收集、评价与利用的实践,从藜麦营养价值与应用、起源与分布、遗传研究、品种选育进展及发展趋势等方面进行了总结,以期为我国藜麦新品种(系)的培育与栽培、产业可持续发展、贫困地区人群增收及新增我国粮食生产途径等方面提供参考信息。
林春,刘正杰,董玉梅,MichelVales,毛自朝. 藜麦的驯化栽培与遗传育种[J]. 遗传, 2019, 41(11): 1009-1022.
Chun Lin,Zhengjie Liu,Yumei Dong,Michel Vales,Zichao Mao. Domesticated cultivation and genetic breeding of Chenopodium quinoa[J]. Hereditas(Beijing), 2019, 41(11): 1009-1022.
[1] | Bermejo JEH, León J . Neglected crops: 1492 from a different perspective. FAO Plant Production and Protection Series No. 26. FAO, Rome, Italy. 1994. |
[2] | Harriman NA . Promoting the conservation and use of underutilized and neglected crops. Econ Bot, 1998,52(4):427-427. |
[3] | Giusti L . Elgenero Chenopodium en Argentina 1: Numeros de cromosomas. Darwiniana, 1970,16:98-105. |
[4] | Garcia M . Agroclimatic at cudy and drought resistance analysis of quinoa for an inigation strategy in the Bolivian Altiplano [Dissertation]. Faculty of Applied Biological Sciaices, KU, Leuven, Belgium, 2003. |
[5] | Winkel T, Aguirre MG, Arizio CM, Aschero CA, Babot MDP, Benoit L, Burgarella C, Costa-Tártara S, Dubois MP, Gay L, Hocsman S, Jullien M, López-Campeny SML, Manifesto MM, Navascués M, Oliszewski N, Pintar E, Zenboudji S, Bertero HD, Joffre R . Discontinuities in quinoa biodiversity in the dry Andes: An 18-century perspective based on allelic genotyping. PLoS One, 2018,13(12):e0207519. |
[6] | Repo-Carrasco R, Espinoza C, Jacobsen SE . Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and ka?iwa(Chenopodium pallidicaule). Food Rev Int, 2003,19(12):179-189. |
[7] | Bhargava A, Shukla S, Ohri D . Chenopodium quinoa-an Indian perspective. Ind Cros Prod, 2006,23(1):73-87. |
[8] | Abugoch LE, James LE . Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. Adv Food Nutr Res, 2009,58:1-31. |
[9] | Schlick G, Bubenheim DL. Quinoa: candidate crop for NASA’s controlled ecological life support systems. In: Janick J. (ed.). Progress in New Crops. ASHS Press, Arlington, VA, 1996, 632-640. |
[10] | Cordeiro LMC, Fátima Reinhardt V, Baggio CH, Paula Werner MF, Burcib LM, Sassakia GL, Iacominia M . Arabinan and arabinan-rich pectic polysaccharides from quinoa (Chenopodium quinoa) seeds: structure and gastroprotective activity. Food Chem, 2012,130(4):937-944. |
[11] | FAO. Food and Agriculture Organization of the United Nations: 2013 International Year of Quinoa Secretariat. URL. |
[12] | Tang Y, Li X, Zhang B, Chen PX, Liu R, Tsao R . Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chem, 2015,166:380-388. |
[13] | Bazile D, Jacobsen SE, Verniau A . The global expansion of quinoa: trends and limits. Front Plant Sci, 2016,9(7):622. |
[14] | Jellen EN, Kolano B, Sederberg MC, Bonifacio A, Maughan PJ. Chenopodium. In: Kole C, eds. Wild Crop Relatives: Genomic and Breeding Resources, Legume Crops and Forages. Springer, Berlin, Germany, 2011, 35-61. |
[15] | González JA, Bruno M, Valoy M, Prado FE . Genotypic variation of gas exchange parameters and leaf stable carbon and nitrogen isotopes in ten quinoa cultivars grown under drought. J Agron Crop Sci, 2011,197(2):81-93. |
[16] | Adolf VI, Shabala SN, Andersen MN, Razzaghi F, Jacobsen SE . Varietal differences of quinoa’s tolerance to saline conditions. Plant Soil, 2012,351(1):117-129. |
[17] | Jacobsen SE . The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev Int, 2003,19(1-2):167-177. |
[18] | Mayes S, Massawe FJ, Alderson PG, Roberts JA, Azam-Ali SN, Hermann M . The potential for underutilized crops to improve security of food production. J Exp Bot, 2011,63(3):1075-1079. |
[19] | Jacobsen SE, St?len O . Quinoa-morphology, phenology and prospects for its production as a new crop in Europe. Eur J Agron, 1993,2(1):19-29. |
[20] | FAO Quinoa: An ancient crop to contribute to world food security. Food and Agriculture Organization, Rome,Italy, 2011. |
[21] | Bhargava A, Shukla S, Ohri D . Genetic variability and interrelationship among various morphological and quality traits in quinoa (Chenopodium quinoa Willd.). Field Crop Res, 2007,101(1):104-116. |
[22] | Vega-Gálvez A, Miranda M, Vergara X, Uribe E, Puente L, Martínez EA . Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: a review. J Sci Food Agri, 2010,90(15):2541-2547. |
[23] | Wright KH, Pike OA, Fairbanks DJ, Huber CS . Composition of Atriplex hortensis, sweet and bitter Chenopodium quinoa seeds. J Food Sci, 2002,67(4):1383-1385. |
[24] | Tang HJ, Watanabe K, Mitsunaga T . Characterization of storage starches from quinoa, barley and adzuki seeds. Carbohyd Polym, 2002,9(1):13-22. |
[25] | Abugoch James LE . Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. Adv Food Nutr Res, 2009,58:1-31. |
[26] | Koziol MJ . Chemical composition and nutritional value of quinoa (Chenopodium quinoa Willd.). J. Food Compos Anal, 1992,5:35-68. |
[27] | Koziol MJ. Quinoa: a potential new oil crop. In: Janick J, Simon JE, eds. New Crops. Wiley, New York, 1993, 328-336. |
[28] | Oshodi AA, Ogungbenle HN, Oladimeji MO . Chemical composition, nutritionally valuable minerals and functional properties of benniseed ( Sesamum radiatum), pearl millet(Pennisetum typhoides) and quinoa (Chenopodium quinoa) flours. Int J Food Sci Nutr, 1999,50(5):325-331. |
[29] | Nowak V, Du J, Charrondière UR . Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem, 2016,193:47-54. |
[30] | Ruales J, Nair BM . Properties of starch and dietary fibre in raw and processed quinoa (Chenopodium quinoa, Willd.) seeds. Plant Foods Hum Nutr, 1994,45(3):223-246. |
[31] | Hirose Y, Fujita T, Ishii T, Ueno N . Antioxidative properties and flavonoid composition of Chenopodium quinoa seeds cultivated in Japan. Food Chem, 2010,119(4):1300-1306. |
[32] | Pa?ko P, Bartoń H, Zagrodzki P, Gorinstein S, Fo?ta M, Zachwieja Z . Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chem, 2009,115(3):994-998. |
[33] | Hu YC, Zhao G, Qin PY, Cheng YF, Cao YN, Zou L, Reng GX . Research progress on bioactive components of quinoa (Chenopodium quinoa Willd.). Acta Agron Sin, 2018,44(11):1579-1591. |
胡一晨, 赵钢, 秦培友, 成颜芬, 曹亚楠, 邹亮, 任贵兴 . 藜麦活性成分研究进展. 作物学报, 2018,44(11):1579-1591. | |
[34] | Wei YM, Yang FR, Liu WY, Huang J, Jin Q . Regulation of nutrient accumulation and distribution in quinoa at different growth stages. Pratacult Sci, 2018,35(7):1720-1727. |
魏玉明, 杨发荣, 刘文瑜, 黄杰, 金茜 . 藜麦不同生育期营养物质积累与分配规律. 草业科学, 2018,35(7):1720-1727. | |
[35] | Bhargava A, Shukla S, Srivastava J, Singh N, Ohri D . Genetic diversity for mineral accumulation in the foliage of Chenopodium spp. Sci Hortic, 2008,118(4):338-346. |
[36] | Liu MG, Yang Q, Yang M, Yang HM . Advances in the studies on feeding potential and adaptability of quinoa. Pratacult Sci, 2017,34(6):1264-1271. |
刘敏国, 杨倩, 杨梅, 杨惠敏 . 藜麦的饲用潜力及适应性. 草业科学, 2017,34(6):1264-1271. | |
[37] | Chen G, Sun Y, Wang G, Chen H, Tang SS, Yu XX . Comprehensive utilization and development prospect of whole-plant Chenopodium quinoa. J Jilin Agric Univ, 2018,40(1):1-6. |
陈光, 孙旸, 王刚, 陈欢, 唐珊珊, 于潇潇 . 藜麦全植株的综合利用及开发前景. 吉林农业大学学报, 2018,40(1):1-6. | |
[38] | Tang Y, Tsao R . Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: a review. Mol Nutr Food Res, 2017,61(7):1600767. |
[39] | APG (2003) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc, 2003,141:399-436. |
[40] | APG (1998) An ordinal classification for the families of flowering plants. Ann Mo Bot Gard, 1998,85:531-553. |
[41] | Kadereit G, Borsch T, Weising K, Freitag H . Phylogeny of Amaranthaceae, Chenopodiaceae and the evolution of C4 photosynthesis. Int J Plant Sci, 2003,164(6):959-986. |
[42] | Müller KF, Borsch T . Phylogenetics of Amaranthaceae based on mat K/trn K sequence data: evidence from parsimony, likelihood, and Bayesian analyses. Ann Mo Bot Gard, 2005,92(1):66-102. |
[43] | Fuentes F, Bazile D, Bhargava A, Martinez EA . Implications of farmers 5 seed exchanges for on-farm conservation of quinoa, as revealed by its genetic diversity in Chile. J Agri Sci, 2012,150:702-716. |
[44] | Aellen P . Chenopodium illustrierte flora von Mitteleuropa, 2nd edn, Vol. 3C. G Hegi, Hanser, Berlin, Germany, 1960,30:569-664. |
[45] | Scott AJ . A review of the classification of Chenopodium L. and related genera (Chenopodiaceae). Botanische Jahrbucher fur Systematik, Pflanzengeschichte und Pflanzengeographie, 1978,100:205-220. |
[46] | Wilson HD . and relatives (Chenopodium sect. Chenopodium subsect. Cellulata). Econ Bot, 1990,44(3):92-110. |
[47] | Jarvis EN, Kopp OR, Jellen EN, Mallory MA, Pattee J, Bonifacio A, Coleman CE, Stevens MR, Fairbanks DJ, Maughan PJ. Simple sequence repeat marker development and genetic mapping in quinoa (Chenopodium quinoa Willd.). J Genet, 2008,87(1):39-51. |
[48] | Devi RJ, Chrungoo NK . Evolutionary divergence in Chenopodium and validation of SNPs in chloroplast rbcL and matk genes by allele-specific PCR for development of Chenopodium quinoa-specific markers. Crop J, 2017,5(1):32-42. |
[49] | Yasui Y, Hirakawa H, Oikawa T, Toyoshima M, Matsuzaki C, Ueno M, Mizuno N, Nagatoshi Y, Imamura T, Miyago M, Tanaka K, Mise K, Tanaka T, Mizukoshi H, Mori M, Fujita Y . Draft genome sequence of an inbred line of Chenopodium quinoa, an allotetraploid crop with great environmental adaptability and outstanding nutritional properties. DNA Res, 2016,23(6):535-546. |
[50] | Fuentes FF, Martinez EA, Hinrichsen PV, Jellen EN, Maughan PJ . Assessment of genetic diversity patterns in Chilean quinoa (Chenopodium quinoa Willd.) germplasm using multiplex fluorescent microsatellite markers. Conserv Genet, 2009,10(2):369-377. |
[51] | Jarvis DE, Ho YS, Lightfoot DJ, Schm?ckel SM, Li B, Borm TJ, Ohyanagi H, Mineta K, Michell CT, Saber N, Kharbatia NM, Rupper RR, Sharp AR, Dally N, Boughton BA, Woo YH, Gao G, Schijlen EG, Guo X, Momin AA, Negr?o S, Al-Babili S, Gehring C, Roessner U, Jung C, Murphy K, Arold ST, Gojobori T, Linden CG, van Loo EN, Jellen EN, Maughan PJ, Tester M . The genome of Chenopodium quinoa. Nature, 2017,542(7641):307-327. |
[52] | Zou C, Chen A, Xiao L, Muller HM, Ache P, Haberer G, Zhang M, Jia W, Deng P, Huang R, Lang D, Li F, Zhan D, Wu X, Zhang H, Bohm J, Liu R, Shabala S, Hedrich R, Zhu JK, Zhang H . A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value. Cell Res, 2017,27(11):1327-1340. |
[53] | Maughan PJ, Chaney L, Lightfoot DJ, Cox BJ, Tester M, Jellen EN, Jarvis DE . Mitochondrial and chloroplast genomes provide insights into the evolutionary origins of quinoa ( Chenopodium quinoa Willd.). Sci Rep, 2019,9(1):185-196. |
[54] | Hong SY, Cheon KS, Yoo KO, Lee HO, Cho KS, Suh JT, Kim SJ, Nam JH, Sohn HB, Kim YH . Complete chloroplast genome sequences and comparative analysis of Chenopodium quinoa and C. album. Front Plant Sci, 2017,8:1696. |
[55] | Fuentes-Bazan S, Mansion G, Borsch T . Towards a species level tree of the globally diverse genus Chenopodium( Chenopodiaceae). Mol Phylogenet Evol, 2012,62(1):359-374. |
[56] | Sukhorukov AP, Zhang M . Fruit and seed anatomy of Chenopodium and related genera (Chenopodioideae, Chenopodiaceae/Amaranthaceae): implications for evolution and taxonomy. PLoS One, 2013,8(4):e61906. |
[57] | Oppenheimer S. Out of Africa, in the real eve-modern man?s journey out of africa. New York:Carrollton and Graf Publishers, An Imprint of Avalon Publishing Group, Inc, 2004. |
[58] | Zhang MH, Yan S, Pan WY, Jin L . Phylogenetic evidence for Sino-Tibetan origin in northern China in the late Neolithic. Nature, 2019,569:112-115. |
[59] | Wilson HD . Quinua biosystematics I: domesticated populations. Econ Bot, 1988,42(4):461-477. |
[60] | Gandarillas H. Botanica quinoa y kaniwa. cultivos andinos. In: Tapia, (ed.) serie librosy materiales educativos. Instituto Interamericano de Ciencias Agricolas. Bogota, Colombia, 1979, 20-44. |
[61] | Christensen SA, Pratt DB, Pratt C, Nelson PT, Stevens MR, Jellen EN, Coleman CE, Fairbanks DJ, Bonifacio A, Maughan PJ . Assessment of genetic diversity in the USDA and CIP-FAO international nursery collections of quinoa (Chenopodium quinoa Willd.) using microsatellite markers. Plant Gene Res, 2007,5(2):82-95. |
[62] | Risi JC, Galwey NW . The Chenopodium grains of the Andes: inca crops for modern agriculture. Adv Appl Biol, 1984,10:145-216. |
[63] | Ruiz-Carrasco K, Antognoni F, Coulibaly AK, Lizardi S, Covarrubias A, Martínez EA, Molina-Montenegro MA, Biondi S, Zurita-Silvad A . Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiol Bioch, 2011,49(11):1333-1341. |
[64] | Zhang T, Gu M, Liu Y, Lv Y, Zhou L, Lu H, Liang S, Bao H, Zhao H . Development of novel InDel markers and genetic diversity in Chenopodium quinoa through whole-genome re-sequencing. BMC Genomics, 2017,18(1):685-700. |
[65] | Maliro MF, Guwela VF, Nyaika J, Murphy KM . Preliminary studies of the performance of quinoa (Chenopodium quinoa Willd.) genotypes under irrigated and rainfed conditions of central Malawi. Front Plant Sci, 2017,8:227. |
[66] | Rojas W, Soto JL, Catrasco E . Study on the social, environmental and economic impacts of quinoa promotion in Bolivia. Proinpa Foundation, La Paz, Bolivia, 2004. |
[67] | Ren GX, Ye QB. Quinoa: botany, production and uses. Beijing: Science Press, 2014, 49-50. |
任贵兴, 叶全宝 . 藜麦生产与应用. 北京: 科学出版社, 2014, 49-50. | |
[68] | Admon AJ, Bazile J, Makungwa H, Chingoli MA, Hirschhorn LR, Peckarsky M, Rigodon J, Herce M, Chingoli F, Malani PN, Hedt-Gauthier BL . Assessing and improving data quality from community health workers: a successful intervention in Neno, Malawi. Public Health Action, 2013,3(1):56-59. |
[69] | Peterson A, Murphy K . Tolerance of lowland quinoa cultivars to sodium chloride and sodium sulfate salinity. Crop Sci, 2015,55(1):331-338. |
[70] | Ren GX, Yang XS, Mo Y. Current situation of quinoa industry in China. Crops, 2015, ( 5):1-5. |
任贵兴, 杨修仕, 么杨 . 中国藜麦产业现状. 作物杂志, 2015, (5):1-5. | |
[71] | Gong BZX, Wang M . Biological characteristics and cultivation techniques ofChenopodium. Tibet Sci Technol, 1995(04):19-22. (in Chinese with English abstract) |
贡布扎西, 旺姆 . 南美藜生物学特性及栽培技术. 西藏科技, 1995, (04):19-22. | |
[72] | Wu HL, Yuan JH, Gao L, Yang CX, Yang YY, Li XY, Lin C . Study on the growing development and physiological characteristics of floating seedlings quinoa. Molecular Plant Breeding, 2019,17(07):2320-2326. |
吴慧琳, 袁加红, 高兰, 杨承欣, 杨沅陽, 李小怡, 林春 . 漂浮育苗藜麦的生长发育及生理特性探究. 分子植物育种, 2019,17(07):2320-2326. | |
[73] | Wei YM, Huang J, Gu X, Jin Q, Liu WY, Yang FR . Current situation and development strategy of quinoa industry in Gansu Province. Crops, 2016, ( 1):12-15. |
魏玉明, 黄杰, 顾娴, 金茜, 刘文瑜, 杨发荣 . 甘肃省藜麦产业现状及发展思路. 作物杂志, 2016, (1):12-15. | |
[74] | 任贵兴 . 第四届中国藜麦产业高峰论坛. 张家口,中国, 2019. |
[75] | Huang J, Yang FR, Li MQ, Wei YM, Gu X, Qi YH . Preliminary evaluation of adaptability of 13 quinoa varieties in the Linxia arid region of Gansu Province, China. Acta Pratacult Sin, 2016,25(3):191-201. |
黄杰, 杨发荣, 李敏权, 魏玉明, 顾娴, 漆永红 . 13个藜麦材料在甘肃临夏旱作区适应性的初步评价. 草业学报, 2016,25(3):191-201. | |
[76] | Deng WY, Zhou JH, Huang Q, Mei L, Guo ZJ, Xu XX, Han MK, Wang ZM . Primary study on the adaptability of quinoa in Beijing. J Chin Agric Univ, 2016,21(12):12-19. |
邓万云, 周继华, 黄琴, 梅丽, 郭自军, 徐学欣, 韩美坤, 王志敏 . 藜麦在北京地区适应性的初步研究. 中国农业大学学报, 2016,21(12):12-19. | |
[77] | Hu YB, Yang XS, Lu P, Ren GX . Diversity and correlation of quality traits in quinoa germplasms from North China. Acta Agron Sin, 2017,43(3):464-470. |
胡一波, 杨修仕, 陆平, 任贵兴 . 中国北部藜麦品质性状的多样性和相关性分析. 作物学报, 2017,43(3):464-470. | |
[78] | Li NN, Ding HF, Hao JJ, Gong YC, Pu YY, Pei RT, Liu BM, Tian Q, Guo XX . The adaptive planting and development prospect of quinoa in China. Chin Agric Bull, 2017,33(10):31-36. |
李娜娜, 丁汉凤, 郝俊杰, 宫永超, 蒲艳艳, 裴艳婷, 刘保民, 田茜, 郭秀秀 . 藜麦在中国的适应性种植及发展展望. 中国农学通报, 2017,33(10):31-36. | |
[79] | Liu JX, Wen RY, Zhang QW, Zhang YF, Bai J . Detection of adverse circumstances resistance indexes of jingle quinoa seed and seedlings under three kinds of salt stress. Seed, 2018,37(2):82-85. |
刘建霞, 温日宇, 张晴雯, 张永芳, 白静 . 3种盐胁迫下静乐藜麦种子与幼苗抗逆指标的检测. 种子, 2018,37(2):82-85. | |
[80] | Song J, Yao YH, Liu Y, Chi DZ, Wang Y . Principal component analysis of agronomic traits of six quinoa varieties (or lines). Seed, 2017,12(6):6-10. |
宋娇, 姚有华, 刘洋, 迟德钊, 王越 . 6个藜麦品种(系)农艺性状的主成分分析. 种子, 2017,12(6):6-10. | |
[81] | Wang YQ, Li CH, Lu WJ, Sun DW, Yin GF, Lu P, Wang LH . Genetic diversity analysis of major agronomic traits in 135 foreign quinoa germplasm accessions. J Plant Genet Resour, 2018,19(5):887-894. |
王艳青, 李春花, 卢文洁, 孙道旺, 尹桂芳, 陆平, 王莉花 . 135份国外藜麦种质主要农艺性状的遗传多样性分析. 植物遗传资源学报, 2018,19(5):887-894. | |
[82] | Lv SM, Mo QZ, Zou PL, Tang P, Wu D, Lv JL, Yue YG . Adaptability of five Chenopodium quinoa varieties (Line) in Liupanshui region. J Guizhou Agri Sci, 2018,46(7):15-17. |
吕树鸣, 莫庆忠, 邹盘龙, 唐罴, 吴迪, 吕金丽, 岳永贵 . 5个藜麦品种(系)在六盘水地区的适应性. 贵州农业科学, 2018,46(7):15-17. | |
[83] | Kawatani K, Ohno T . Chromosome numbers of genus Chenopodium, II. Jap J Gene, 1956,31:15-17. |
[84] | Kolano B, Siwinska D, Pando LG, Szymanowska-Pulka J, Maluszynska J . Genome size variation in Chenopodium quinoa(Chenopodiaceae). Plant Syst Evol, 2012,298(1):251-255. |
[85] | Kolano B, Siwinsk D, McCann J, Weiss-Schneeweiss H. The evolution of genome size and rDNA in diploid species of Chenopodium s.l.(Amaranthaceae). Bot J Linn Soc, 2015,179(2):218-235. |
[86] | Walsh BM, Adhikary D, Maughan PJ, Emshwiller E, Jellen EN . Chenopodium polyploidy inferences from Salt Overly Sensitive 1 (SOS1) data. Am J Bot, 2015,102(4):533-543. |
[87] | Groom QJ . Piecing together the biogeographic history ofChenopodium vulvaria L. using botanical literature and collections. PeerJ . 2015,8(3):e723. |
[88] | Kolano B, McCann J, Orzechowska M, Siwinska D, Temsch E, Weiss-Schneeweiss H. Molecular and cytogenetic evidence for an allotetraploid origin of Chenopodium quinoa and C. berlandieri(Amaranthaceae). Mol Phylogenet Evol, 2016,100:109-123. |
[89] | Storchová H, Drabe?ová J, Cháb D, Kolá? J, Jellen EN . The introns in FLOWERING LOCUS T-LIKE (FTL) genes are useful markers for tracking paternity in tetraploid Chenopodium quinoa Willd. Genet Resour Crop Ev, 2014,62(6):913-925. |
[90] | Krak K, Vít P, Belyayev A, Douda J, Hreusová L , Mandák B: Allopolyploid origin of Chenopodium album s. str.(Chenopodiaceae): A molecular and cytogenetic insight. PLoS One, 2016,11(8):e0161063. |
[91] | Wilson HD, Heiser CB . The origin and evolutionary relationships of ‘Huauzontle’ (Chenopodium nuttalliae Safford), domesticated Chenopod of Mexico. Am J Bot, 1979,66(2):198-206. |
[92] | Rana S, Kumar R, Sultana S, Sharma RK . Radiation- induced biomarkers for the detection and assessment of absorbed radiation doses. J Pharm Bioallied Sci, 2010,2(3):189-196. |
[93] | Maughan PJ, Smith SM, Rojas-Beltrán JA, Elzinga D, Raney JA, Jellen EN, Bonifacio A, Udall JA, Fairbanks DJ . Single nucleotide polymorphism identification, characterization, and linkage mapping in quinoa. Plant Genome, 2012,5:114-125. |
[94] | Christensen SA, Pratt DB, Pratt C, Nelson PT, Stevens MR, Jellen EN, Coleman CE, Fairbanks DJ, Bonifacio A, Maughan PJ . Assessment of genetic diversity in the USDA and CIP-FAO international nursery collections of quinoa (Chenopodium quinoa Willd.) using microsatellite markers. Plant Genet Resour, 2007,5(2):82-95. |
[95] | Wang YK, Hu Y, Zhang TZ . Current status and perspective of RAD-seq in genomic research. Hereditas (Beijing), 2014,36(1):41-49. |
王洋坤, 胡艳, 张天真 . RAD-seq技术在基因组研究中的现状及展望. 遗传, 2014,36(1):41-49. | |
[96] | Carmen DC, Mahy G, Winkel T . La quinoa en Bolivie: une culture ancestrale devenue culture de rente “bio- équitable”. Biotechnol Agron Soc Environ, 2008,12:421-435. |
[97] | Ward SM, Johnson DL . Cytoplasmic male sterility in quinoa. Euphytica, 1992,66(3):217-223. |
[98] | Benlhabib O, Boujartani N, Maughan PJ, Jacobsen SE, Jellen EN . Elevated genetic diversity in an F2:6 population of quinoa (Chenopodium quinoa) developed through an inter-ecotype cross. Front Plant Sci, 2016,7:1222. |
[99] | Maughan PJ, Turner TB, Coleman CE, Elzinga DB, Jellen EN, Morales JA, Udall JA, Fairbanks DJ, Bonifacio A . Characterization of salt overly sensitive 1 (SOS1) gene homoeologs in quinoa(Chenopodium quinoa Willd.). Genome, 2009,52(7):647-657. |
[100] | Yue H, Chang X, Zhi YQ, Wang L, Xing GW, Song WN, Nie XJ . Evolution and identification of the WRKY gene family in quinoa(Chenopodium quinoa). Genes, 2019,10(2):131-154. |
[101] | Li F, Guo XH, Liu JX, Zhou F, Liu WY, Wu J, Zhang HL, Cao HF, Su HZ, Wen RY . Genome-wide identification, characterization, and expression analysis of the NAC transcription factor in Chenopodium quinoa. Genes, 2019,10(7):500. |
[102] | Coles ND, Coleman CE, Christensen SA, Jellen EN, Steven MR, Bonifacio A, Rojas-Beltran JA, Fairbanks DJ, Maughan PJ . Development and use of an expressed sequenced tag library in quinoa (Chenopodium quinoa Willd.) for the discovery of single nucleotide polymorphisms. Plant Sci, 2005,168(2):439-447. |
[103] | Reynolds DJ . Genetic dissection of triterpenoid saponin production in Chenopodium quinoa using microarray analysis. MSc thesis. Brigham Young University, Utah, United States. 2009. |
[104] | Imamura T, Isozumi N, Higashimura Y, Miyazato A, Mizukoshi H, Ohki S, Mori M . Isolation of amaranthin synthetase from Chenopodium quinoa and construction of an amaranthin production system using suspension- cultured tobacco BY-2 cells. Plant Biotech J, 2019,17(5):969-981. |
[105] | Nerva L, Vigani G, Di Silvestre D, Ciuffo M, Forgia M, Chitarra W, Turina M . Biological and molecular characterization of Chenopodium quinoa Mitovirus 1 reveals a distinct sRNA response compared to cytoplasmic RNA viruses. J Virol, 2019,93(7). |
[106] | Shi ZX, Yang XS, Yao Y, Ren GX . Quality characters analysis of the seed of 60 domestic and overseas quinoa accessions. J Plant Genet Resour, 2017,18(01):88-93. |
石振兴, 杨修仕, 么杨, 任贵兴 . 60份国内外藜麦材料子粒的品质性状分析. 植物遗传资源学报, 2017,18(01):88-93 | |
[107] | Fernie AR, Yan JB . De novo domestication: an alternative route toward new crops for the future. Mol Plant, 2019,12(5):615-631. |
[108] | Murphy KM, Bazile D, Kellogg J, Rahmanian M. Development of a worldwide consortium on evolutionary participatory breeding in quinoa. Front Plant Sci, 2016,7(04):608. |
[109] | Sun XY, Yang XS, Xue P, Zhang GZ, Ren GX . Improved antibacterial effects of alkali-transformed saponin from quinoa husks against halitosis-related bacteria. BMC Complem Altern M, 2019,19(1):46. |
[110] | 袁隆平 . 第二届国际海水稻论坛. 青岛, 中国, 2017. |
[111] | Shan L, Deng XP, Kang SZ . Current situation and perspective of agricultural water used in semiarid area of China. J Hydraul Eng, 2002,9(9):28-31. |
山仑, 邓西平, 康绍忠 . 我国半干旱地区农业用水现状及发展方向. 水利学报, 2002,9(9):28-31. | |
[112] | Zurita-Silva A, Fuentes F, Zamora P, Jacobsen SE, Schwember AR . Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives. Mol Breed, 2014,34(1):13-30. |
[113] | Limburg H, Mastebroek HD. Breeding high yielding lines of Chenopodium quinoa Willd. With saponin free seed. In: St?len O, Bruhn K, Pithan K, Hill J. (Eds.), Small grain cereals and pseudo-cereals. Proc COST 814 workshop, Copenhagen, Denmark, 1996, 103-114. |
[114] | Zhang S, Yu WB, Wang H . The sunward movement of Alpine plant flowers and its adaptation significance. Wuhan Bot Res, 2008,26(2):197-202. |
张舒, 郁文彬, 王红 . 高山植物花的向日运动及其适应意义. 武汉植物学研究, 2008,26(2):197-202. | |
[115] | Peterson A, Jacobsen SE, Bonifacio A, Murphy K . A crossing method for quinoa. Sustainability, 2015,7:3230-3243. |
[116] | Chen L, Liu YG . Male sterility and fertility restoration in crops. Annu Rev Plant Biol, 2014,65:579-606. |
[117] | Yang FR . Breeding and application prospect of a new Chenopodium variety Longli No.1. Gansu Agric Sci Technol, 2015, (12):1-4, 5. |
杨发荣 . 藜麦新品种陇藜1号的选育及应用前景. 甘肃农业科技, 2015, ( 12):1-4, 5. | |
[118] | Paterson AH, Kolata AL . Genomics: keen insights from quinoa. Nature, 2017,542(7641):300-302. |
[119] | Kadereit G, Mavrodiev EV, Zacharias EH, Sukhorukov AP . Molecular phylogeny of Atripliceae (Chenopodioideae, Chenopodiaceae): implications for systematics, biogeography, flower and fruit evolution, and the origin of C4 photosynthesis. Am J Bot, 2010,97(10):1664-1687. |
[120] | Zhang TF, Qi WC, Gu MF, Zhang XL, Li T, Zhao H . Exploration and transferability evaluation of EST-SSRs in quinoa. Acta Agron Sin, 2016,42(4):492-500. |
张体付, 戚维聪, 顾闽峰, 张晓林, 李坦, 赵涵 . 藜麦EST-SSR的开发及通用性分析. 作物学报, 2016,42(4):492-500. | |
[121] | Li N, Wang X, Ma BJ, Du C, Zheng LL, Wang YC . Expression of a Na +/H + antiporter RtNHX1 from a recretohalophyte Reaumuria trigyna improved salt tolerance of transgenic Arabidopsis thaliana. J Plant Physiol, 2017,218(1):109-120. |
[122] | Baghour M, Gálvez FJ, Sánchez ME, Aranda MN, Venema K, Rodríguez-Rosales MP . Overexpression of LeNHX2 and SlSOS2 increases salt tolerance and fruit production in double transgenic tomato plants. Plant Physiol Bioch, 2019,135:77-86. |
[123] | Pandeya D, Campbell LM, Nunes E, Lopez-Arredondo DL, Janga MR, Herrera-Estrella L, Rathore KS . ptxD gene in combination with phosphite serves as a highly effective selection system to generate transgenic cotton(Gossypium hirsutum L.). Plant Mol Biol, 2017,95(6):567-577. |
[124] | Hickey LT, N Hafeez A, Robinson H, Jackson SA, Leal-Bertioli SCM, Tester M, Gao C, Godwin ID, Hayes BJ, Wulff BBH . Breeding crops to feed 10 billion. Nat Biotechnol, 2019,37(7):744-754. |
[1] | 田璐妍, 黄小珍. 植物开花调控中蛋白质相分离机制在从头驯化中的应用价值[J]. 遗传, 2023, 45(9): 754-764. |
[2] | 廉小平, 黄光福, 张玉娇, 张静, 胡凤益, 张石来. 长雄野生稻有利基因的发掘与利用[J]. 遗传, 2023, 45(9): 765-780. |
[3] | 简六梅, 肖英杰, 严建兵. 从头驯化:作物品种设计与培育的新方向[J]. 遗传, 2023, 45(9): 741-753. |
[4] | 赖笔威, 陈磊, 芦思佳. 大豆光周期适应性研究进展[J]. 遗传, 2023, 45(9): 793-800. |
[5] | 付孟, 李艳. 家马的起源历史与品种驯化特征[J]. 遗传, 2022, 44(3): 216-229. |
[6] | 李玲红, 苟彤, 任爱霞, 丁鹏程, 林文, 武祥云, 孙敏, 高志强. 藜麦基因组学与重要农艺性状位点研究进展[J]. 遗传, 2022, 44(11): 1009-1027. |
[7] | 文子龙, 赵毅强. 群体遗传学下动物驯化研究进展[J]. 遗传, 2021, 43(3): 226-239. |
[8] | 杨新萍,于媛,许操. 重新设计与快速驯化创造新型作物[J]. 遗传, 2019, 41(9): 827-835. |
[9] | 吴比, 胡伟, 邢永忠. 中国水稻遗传育种历程与展望[J]. 遗传, 2018, 40(10): 841-857. |
[10] | 马三垣,夏庆友. 家蚕遗传育种:从传统杂交到分子设计[J]. 遗传, 2017, 39(11): 1025-1032. |
[11] | 潘章源, 贺小云, 王翔宇, 郭晓飞, 曹晓涵, 胡文萍, 狄冉, 刘秋月, 储明星. 家养动物选择信号研究进展[J]. 遗传, 2016, 38(12): 1069-1080. |
[12] | 周菲, 路史展, 高亮, 张娟娟, 林拥军. 植物质体基因工程:新的优化策略及应用[J]. 遗传, 2015, 37(8): 777-792. |
[13] | 区树俊,汪鸿儒,储成才. 2012年第11期《遗传》封面说明[J]. 遗传, 2012, 34(11): 1389-1389. |
[14] | 区树俊,汪鸿儒,储成才. 亚洲栽培稻主要驯化性状研究进展[J]. 遗传, 2012, 34(11): 1379-1389. |
[15] | 杨宇晖,梁旭方,方荣,彭敏燕,黄志东. 鳜脂蛋白脂酶基因SNP及其与食性驯化相关性分析[J]. 遗传, 2011, 33(9): 996-1002. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: