遗传 ›› 2021, Vol. 43 ›› Issue (11): 1078-1087.doi: 10.16288/j.yczz.21-217
闫凌月1(), 张豪健1, 郑雨晴1, 丛韫起1, 刘次桃1, 樊帆1, 郑铖1, 袁贵龙2, 潘根3, 袁定阳2(
), 段美娟1(
)
收稿日期:
2021-06-20
修回日期:
2021-08-21
出版日期:
2021-11-20
发布日期:
2021-10-12
通讯作者:
袁定阳,段美娟
E-mail:yanlingyue0203@163.com;yuandingyang@hhrrc.ac.cn;duanmeijuan@163.com
作者简介:
闫凌月,在读硕士研究生,专业方向:作物遗传育种。E-mail: 基金资助:
Lingyue Yan1(), Haojian Zhang1, Yuqing Zheng1, Yunqi Cong1, Citao Liu1, Fan Fan1, Cheng Zheng1, Guilong Yuan2, Gen Pan3, Dingyang Yuan2(
), Meijuan Duan1(
)
Received:
2021-06-20
Revised:
2021-08-21
Online:
2021-11-20
Published:
2021-10-12
Contact:
Yuan Dingyang,Duan Meijuan
E-mail:yanlingyue0203@163.com;yuandingyang@hhrrc.ac.cn;duanmeijuan@163.com
Supported by:
摘要:
低温冷害是影响水稻高产的关键环境因素,鉴定和克隆具有重要应用价值的耐低温基因并培育耐低温新品种对于保障粮食安全具有重要意义。MADS转录因子在植物逆境信号途径中扮演着重要的角色。本研究利用qRT-PCR检测,发现OsMADS25受低温和脱落酸(abscisic acid, ABA)诱导表达上调,预示OsMADS25可能参与ABA依赖的逆境信号途径。进一步构建了水稻OsMADS25 的过表达载体pCambia1300-221-OsMADS25-Flag,利用根癌农杆菌介导的遗传转化法将其导入水稻品种中花11 (ZH11),选取两个表达量高的纯合株系进行表型鉴定。结果表明,OsMADS25过表达株系显著提高了水稻苗期对低温的耐受性以及对ABA的敏感性。利用3,3-二氨基联苯胺(diaminobezidine, DAB)和氯化硝基四氮唑蓝(nitrotetrazolium blue chloride, NBT)组织化学染色结果表明:低温处理后,OsMADS25过表达株系比野生型ZH11染色浅,表明过表达株系在低温胁迫下积累的活性氧(reactive oxygen species, ROS)相对较少,增强了对低温的耐受性。综合结果表明,低温逆境下OsMADS25响应ABA信号,通过提高水稻对ROS的清除能力,避免水稻受到低温伤害。
闫凌月, 张豪健, 郑雨晴, 丛韫起, 刘次桃, 樊帆, 郑铖, 袁贵龙, 潘根, 袁定阳, 段美娟. 转录因子OsMADS25提高水稻对低温的耐受性[J]. 遗传, 2021, 43(11): 1078-1087.
Lingyue Yan, Haojian Zhang, Yuqing Zheng, Yunqi Cong, Citao Liu, Fan Fan, Cheng Zheng, Guilong Yuan, Gen Pan, Dingyang Yuan, Meijuan Duan. Transcription factor OsMADS25 improves rice tolerance to cold stress[J]. Hereditas(Beijing), 2021, 43(11): 1078-1087.
表1
qRT-PCR检测引物"
引物名称 | 引物序列(5ʹ→3ʹ) |
---|---|
OsMADS25 | F: GAGGATCGACAACACGATGAA |
R: GGTGCAGGAGAAGACAATGA | |
LTG1 | F: CGTGCTGAATGGGCTGATAA |
R: GTTGAGGTTGATGCCAAGGA | |
OsEREB6 | F: TCCGGTTTGTTCCCAGTTTAG |
R: GCCTGGATGTAGTGCATCTG | |
OsTPP1 | F: CCATCTACATTGGAGACGACAG |
R: CCTTGGGAACCTGTGAAACTA | |
Ubiqitin | F: GCTCCGTGGCGGTATCAT |
R: CGGCAGTTGACAGCCCTAG |
[1] | Maclean JL, Dawe DC, Hardy B, Hettel GP. Rice almanac: source book for the most important economic activity on earth (3rd edition). Oxon, U.K.: CABI Pub., 2002. |
[2] |
Gross BL, Zhao ZJ. Archaeological and genetic insights into the origins of domesticated rice. Proc Natl Acad Sci USA, 2014, 111(17):6190-6197.
doi: 10.1073/pnas.1308942110 |
[3] |
Zhang ZY, Li JJ, Pan YH, Li JL, Zhou L, Shi HL, Zeng YW, Guo HF, Yang SM, Zheng WW, Yu JP, Sun XM, Li GL, Ding YL, Ma L, Shen SQ, Dai LY, Zhang HL, Yang SH, Guo Y, Li ZC. Natural variation in CTB4a enhances rice adaptation to cold habitats. Nat Commun, 2017, 8:14788.
doi: 10.1038/ncomms14788 |
[4] |
Wang D, Liu JL, Li CG, Kang HX, Wang Y, Tan XQ, Liu MH, Deng YF, Wang ZL, Liu Y, Zhang DY, Xiao YH, Wang GL. Genome-wide association mapping of cold tolerance genes at the seedling stage in rice. Rice, 2016, 9(1):61.
doi: 10.1186/s12284-016-0133-2 pmid: 27848161 |
[5] |
Schläppi MR, Jackson AK, Eizenga GC, Wang AJ, Chu CC, Shi Y, Shimoyama N, Boykin DL. Assessment of five chilling tolerance traits and GWAS mapping in rice using the USDA Mini-Core collection. Front Plant Sci, 2017, 8:957.
doi: 10.3389/fpls.2017.00957 pmid: 28642772 |
[6] |
Zhao JL, Zhang SH, Yang TF, Zeng ZC, Huang ZH, Liu Q, Wang XF, Leach J, Leung H, Liu B. Global transcriptional profiling of a cold-tolerant rice variety under moderate cold stress reveals different cold stress response mechanisms. Physiol Plant, 2015, 154(3):381-394.
doi: 10.1111/ppl.2015.154.issue-3 |
[7] |
Pan YH, Zhang HL, Zhang DL, Li JJ, Xiong HY, Yu JP, Li JL, Rashid MAR, Li GL, Ma XD, Cao GL, Han LZ, Li ZC. Genetic analysis of cold tolerance at the germination and booting stages in rice by association mapping. PLoS One, 2015, 10(3):e0120590.
doi: 10.1371/journal.pone.0120590 |
[8] |
Zhu YJ, Chen K, Mi XF, Chen TX, Ali J, Ye GY, Xu JL, Li ZK. Identification and fine mapping of a stably expressed QTL for cold tolerance at the booting stage using an interconnected breeding population in rice. PLoS One, 2015, 10(12):e0145704.
doi: 10.1371/journal.pone.0145704 |
[9] |
Fujino K, Sekiguchi H, Matsuda Y, Sugimoto K, Ono K, Yano M. Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Proc Natl Acad Sci USA, 2008, 105(34):12623-12628.
doi: 10.1073/pnas.0805303105 |
[10] | Liu CT, Schläppi MR, Mao BG, Wang W, Wang AJ, Chu CC. The bZIP73 transcription factor controls rice cold tolerance at the reproductive stage. Plant Biotechnol J, 2019, 17(9):1834-1849. |
[11] |
Ma Y, Dai XY, Xu YY, Luo W, Zheng XM, Zeng DL, Pan YJ, Lin XL, Liu HH, Zhang DJ, Xiao J, Guo XY, Xu SJ, Niu YD, Jin JB, Zhang H, Xu X, Li LG, Wang W, Qian Q, Ge S, Chong K. COLD1 confers chilling tolerance in rice. Cell, 2015, 160(6):1209-1221.
doi: 10.1016/j.cell.2015.01.046 |
[12] |
Zhao JL, Zhang SH, Dong JF, Yang TF, Mao XX, Liu Q, Wang XF, Liu B. A novel functional gene associated with cold tolerance at the seedling stage in rice. Plant Biotechnol J, 2017, 15(9):1141-1148.
doi: 10.1111/pbi.2017.15.issue-9 |
[13] |
Kim SI, Andaya VC, Tai TH. Cold sensitivity in rice (Oryza sativa L.) is strongly correlated with a naturally occurring I99V mutation in the multifunctional glutathione transferase isoenzyme GSTZ2. Biochem J, 2011, 435(2):373-380.
doi: 10.1042/BJ20101610 |
[14] |
Mao DH, Xin YY, Tan YJ, Hu XJ, Bai JJ, Liu ZY, Yu YL, Li LY, Peng C, Fan T, Zhu YX, Guo YL, Wang SH, Lu DP, Xing YZ, Yuan LP, Chen CY. Natural variation in the HAN1 gene confers chilling tolerance in rice and allowed adaptation to a temperate climate. Proc Natl Acad Sci USA, 2019, 116(9):3494-3501.
doi: 10.1073/pnas.1819769116 |
[15] |
Lu GW, Wu FQ, Wu WX, Wang HJ, Zheng XM, Zhang YH, Chen XL, Zhou KN, Jin MN, Cheng ZJ, Li XY, Jiang L, Wang HY, Wan JM. Rice LTG1 is involved in adaptive growth and fitness under low ambient temperature. Plant J, 2014, 78(3):468-480.
doi: 10.1111/tpj.12487 |
[16] |
Saito K, Hayano-Saito Y, Kuroki M, Sato Y. Map-based cloning of the rice cold tolerance gene Ctb1. Plant Sci, 2010, 179(1-2):97-102.
doi: 10.1016/j.plantsci.2010.04.004 |
[17] |
Liu CT, Ou SJ, Mao BG, Tang JY, Wang W, Wang HR, Cao SY, Schläppi MR, Zhao BR, Xiao GY, Wang XP, Chu CC. Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates. Nat Commun, 2018, 9(1):3302.
doi: 10.1038/s41467-018-05753-w |
[18] |
Xiao N, Gao Y, Qian HJ, Gao Q, Wu YY, Zhang DP, Wang Z, Zhang XX, Yu L, Li YH, Pan CH, Liu GQ, Zhou CH, Jiang M, Huang NS, Dai ZY, Liang CZ, Chen Z, Chen JM, Li AH. Identification of genes related to cold tolerance and a functional allele that confers cold tolerance. Plant Physiol, 2018, 177(3):1108-1123.
doi: 10.1104/pp.18.00209 |
[19] |
Yang SJ, Vanderbeld B, Wan JX, Huang YF. Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant, 2010, 3(3):469-490.
doi: 10.1093/mp/ssq016 |
[20] |
Seo E, Lee H, Jeon J, Park H, Kim J, Noh YS, Lee I. Crosstalk between cold response and flowering inArabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC. Plant Cell, 2009, 21(10):3185-3197.
doi: 10.1105/tpc.108.063883 |
[21] |
Yu LH, Wu J, Zhang ZS, Miao ZQ, Zhao PX, Wang Z, Xiang CB. Arabidopsis MADS-box transcription factor AGL21 acts as environmental surveillance of seed germination by regulating ABI5 expression. Mol Plant, 2017, 10(6):834-845.
doi: 10.1016/j.molp.2017.04.004 |
[22] |
Wei B, Cai T, Zhang RZ, Li AL, Huo NX, Li S, Gu YQ, Vogel J, Jia JZ, Qi YJ, Mao L. Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon(L.) Beauv. Funct Integr Genomics, 2009, 9(4):499-511.
doi: 10.1007/s10142-009-0128-9 |
[23] | Khong GN, Pati PK, Richaud F, Parizot B, Bidzinski P, Mai CD, Bès M, Bourrié I, Meynard D, Beeckman T, Selvaraj MG, Manabu I, Genga AM, Brugidou C, Nang Do V, Guiderdoni E, Morel JB, Gantet P. OsMADS26 negatively regulates resistance to pathogens and drought tolerance in rice. Plant Physiol, 2015, 169(4):2935-2949. |
[24] |
Chen C, Begcy K, Liu K, Folsom JJ, Wang Z, Zhang C, Walia H. Heat stress yields a unique MADS box transcription factor in determining seed size and thermal sensitivity. Plant Physiol, 2016, 171(1):606-622.
doi: 10.1104/pp.15.01992 pmid: 26936896 |
[25] |
Zhang GP, Xu N, Chen HL, Wang GX, Huang JL. OsMADS25 regulates root system development via auxin signalling in rice. Plant J, 2018, 95(6):1004-1022.
doi: 10.1111/tpj.2018.95.issue-6 |
[26] |
Xu N, Chu YL, Chen HL, Li XX, Wu Q, Jin L, Wang GX, Huang JL. Rice transcription factor OsMADS25 modulates root growth and confers salinity tolerance via the ABA-mediated regulatory pathway and ROS scavenging. PLoS Genet, 2018, 14(10):e1007662.
doi: 10.1371/journal.pgen.1007662 |
[27] |
Yu CY, Liu YH, Zhang AD, Su S, Yan A, Huang LL, Ali I, Liu Y, Forde BG, Gan YB. MADS-box transcription factor OsMADS25 regulates root development through affection of nitrate accumulation in rice. PLoS One, 2015, 10(8):e0135196.
doi: 10.1371/journal.pone.0135196 |
[28] | Liu CT, Wang W, Mao BG, Chu CC. Cold stress tolerance in rice: physiological changes, molecular mechanism, and future prospects. Hereditas(Beijing), 2018, 40(3):171-185. |
刘次桃, 王威, 毛毕刚, 储成才. 水稻耐低温逆境研究: 分子生理机制及育种展望. 遗传, 2018, 40(3):171-185. | |
[29] |
Ke YG, Yang ZJ, Yu SW, Li TF, Wu JH, Gao H, Fu YP, Luo LJ. Characterization of OsDREB6 responsive to osmotic and cold stresses in rice. J Plant Biol, 2014, 57(3):150-161.
doi: 10.1007/s12374-013-0480-0 |
[30] |
Habibur Rahman Pramanik M, Imai R. Functional identification of a trehalose 6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice. Plant Mol Biol, 2005, 58(6):751-762.
doi: 10.1007/s11103-005-7404-4 pmid: 16240171 |
[31] |
Ge LF, Chao DY, Shi M, Zhu MZ, Gao JP, Lin HX. Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta, 2008, 228(1):191-201.
doi: 10.1007/s00425-008-0729-x |
[32] |
Zhang ZY, Li JH, Li F, Liu HH, Yang WS, Chong K, Xu YY. OsMAPK3 phosphorylates OsbHLH002/OsICE1 and inhibits its ubiquitination to activate OsTPP1 and enhances rice chilling tolerance. Dev Cell, 2017, 43(6): 731-743.e5.
doi: 10.1016/j.devcel.2017.11.016 |
[1] | 卞中, 曹东平, 庄文姝, 张舒玮, 刘巧泉, 张林. 水稻分子设计育种启示:传统与现代相结合[J]. 遗传, 2023, 45(9): 718-740. |
[2] | 刘向东, 吴锦文, 陆紫君, Muhammad Qasim Shahid. 同源四倍体水稻:低育性机理、改良与育种展望[J]. 遗传, 2023, 45(9): 781-792. |
[3] | 郝小花, 胡爽, 赵丹, 田连福, 谢子靖, 吴莎, 胡文俐, 雷晗, 李东屏. OsGA3ox通过合成不同活性GA调控水稻育性及株高[J]. 遗传, 2023, 45(9): 845-855. |
[4] | 郑镇武, 赵宏源, 梁晓娅, 王一珺, 王驰航, 巩高洋, 黄金燕, 张桂权, 王少奎, 刘祖培. 水稻qGL3.4调控籽粒大小与株型[J]. 遗传, 2023, 45(9): 835-844. |
[5] | 陈明江, 刘贵富, 肖叶青, 余泓, 李家洋. 中科发早粳1号分子设计育种[J]. 遗传, 2023, 45(9): 829-834. |
[6] | 刘永强, 李威威, 刘昕禹, 储成才. 水稻分蘖氮响应调控机理研究进展[J]. 遗传, 2023, 45(5): 367-378. |
[7] | 李姗, 黄允智, 刘学英, 傅向东. 作物氮肥利用效率遗传改良研究进展[J]. 遗传, 2021, 43(7): 629-641. |
[8] | 张昌泉, 冯琳皓, 顾铭洪, 刘巧泉. 江苏省水稻品质性状遗传和重要基因克隆研究进展[J]. 遗传, 2021, 43(5): 425-441. |
[9] | 代航, 李延, 刘树春, 林磊, 吴娟燕, 张志杰, 彭崎春, 李楠, 张向前. 类伸展蛋白OsPEX1对水稻花粉育性的影响[J]. 遗传, 2021, 43(3): 271-279. |
[10] | 胡雅丽, 戴睿, 刘永鑫, 张婧赢, 胡斌, 储成才, 袁怀波, 白洋. 水稻典型品种日本晴和IR24根系微生物组的解析[J]. 遗传, 2020, 42(5): 506-518. |
[11] | 张桂权. 基于SSSL文库的水稻设计育种平台[J]. 遗传, 2019, 41(8): 754-760. |
[12] | 李泽琴,李锦涛,邴杰,张根发. 拟南芥APX家族基因在植物生长发育与非生物逆境胁迫响应中的作用分析[J]. 遗传, 2019, 41(6): 534-547. |
[13] | 刘次桃, 王威, 毛毕刚, 储成才. 水稻耐低温逆境研究:分子生理机制及育种展望[J]. 遗传, 2018, 40(3): 171-185. |
[14] | 杨德卫, 郑向华, 程朝平, 叶宁, 黄凤凰, 叶新福. 基于CSSLs群体定位和图位克隆水稻长芒基因GAD1-2[J]. 遗传, 2018, 40(12): 1101-1111. |
[15] | 辛高伟, 胡熙璕, 王克剑, 王兴春. Cas9蛋白变体VQR高效识别水稻NGAC前间区序列邻近基序[J]. 遗传, 2018, 40(12): 1112-1119. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: