遗传 ›› 2022, Vol. 44 ›› Issue (1): 3-14.doi: 10.16288/j.yczz.21-347
韩玉婷(), 许博文, 李羽童, 卢心怡, 董习之, 邱雨浩, 车沁耘, 朱芮葆, 郑丽, 李孝宸, 司绪, 倪建泉(
)
收稿日期:
2021-10-07
修回日期:
2021-12-21
出版日期:
2022-01-20
发布日期:
2022-01-04
通讯作者:
倪建泉
E-mail:hanyt19@mails.tsinghua.edu.cn;nijq@mail.tsinghua.edu.cn
作者简介:
韩玉婷,在读博士研究生,研究方向:基因调控技术。E-mail: 基金资助:
Han Yuting(), Xu Bowen, Li Yutong, Lu Xinyi, Dong Xizhi, Qiu Yuhao, Che Qinyun, Zhu Ruibao, Zheng Li, Li Xiaochen, Si Xu, Ni Jianquan(
)
Received:
2021-10-07
Revised:
2021-12-21
Online:
2022-01-20
Published:
2022-01-04
Contact:
Ni Jianquan
E-mail:hanyt19@mails.tsinghua.edu.cn;nijq@mail.tsinghua.edu.cn
Supported by:
摘要:
转基因调控技术在生命医学研究中扮演了重要的角色,是探究个体发育和致病机制的必备工具。常用的转基因调控技术包括基因突变、基因干扰和基因转录激活等。果蝇由于具有基因的保守性、遗传工具的多样性以及不受伦理限制等优势,成为生命科学研究中经典模式动物之一,并由此开发出了多种时间和组织特异性的基因调控工具。本文主要介绍了目前在果蝇中常用的基因调控技术,包括CRISPR/Cas9介导的基因突变系统、基于miRNA的新一代转基因干扰系统以及基于CRISPR/dCas9的转录激活(flySAM)系统,希望通过对这几种系统设计原理、操作过程、相关的技术工具及相关资源品系的介绍,提升人们对这些前沿的果蝇遗传学基因表达调控技术及构建的相关果蝇资源品系重要性认识,进而推动生命医学研究发展。
韩玉婷, 许博文, 李羽童, 卢心怡, 董习之, 邱雨浩, 车沁耘, 朱芮葆, 郑丽, 李孝宸, 司绪, 倪建泉. 模式动物果蝇的基因调控前沿技术[J]. 遗传, 2022, 44(1): 3-14.
Han Yuting, Xu Bowen, Li Yutong, Lu Xinyi, Dong Xizhi, Qiu Yuhao, Che Qinyun, Zhu Ruibao, Zheng Li, Li Xiaochen, Si Xu, Ni Jianquan. The cutting edge of gene regulation approaches in model organism Drosophila[J]. Hereditas(Beijing), 2022, 44(1): 3-14.
[1] |
Esquerda-Canals G, Montoliu-Gaya L, Güell-Bosch J, Villegas S. Mouse models of Alzheimer's disease. J Alzheimers Dis, 2017, 57(4):1171-1183.
doi: 10.3233/JAD-170045 pmid: 28304309 |
[2] |
Jin HL, He R, Oyoshi M, Geha RS. Animal models of atopic dermatitis. J Invest Dermatol, 2009, 129(1):31-40.
doi: 10.1038/jid.2008.106 |
[3] |
High KA, Roncarolo MG. Gene therapy. N Engl J Med, 2019, 381(5):455-464.
doi: 10.1056/NEJMra1706910 |
[4] |
Nüsslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature, 1980, 287(5785):795-801.
doi: 10.1038/287795a0 |
[5] |
Hoffmann JA. The immune response ofDrosophila. Nature, 2003, 426(6962):33-38.
doi: 10.1038/nature02021 |
[6] |
Konopka RJ, Benzer S. Clock mutants ofDrosophila melanogaster. Proc Natl Acad Sci USA, 1971, 68(9):2112-2116.
doi: 10.1073/pnas.68.9.2112 |
[7] |
Housden BE, Muhar M, Gemberling M, Gersbach CA, Stainier DYR, Seydoux G, Mohr SE, Zuber J, Perrimon N. Loss-of-function genetic tools for animal models: cross-species and cross-platform differences. Nat Rev Genet, 2017, 18(1):24-40.
doi: 10.1038/nrg.2016.118 |
[8] |
Xu RG, Wang X, Shen D, Sun J, Qiao HH, Wang F, Liu LP, Ni JQ. Perspectives on gene expression regulation techniques inDrosophila. J Genet Genomics, 2019, 46(4):213-220.
doi: 10.1016/j.jgg.2019.03.006 |
[9] |
Xu J, Ren XJ, Sun J, Wang X, Qiao HH, Xu B-W, Liu LP, Ni JQ. A toolkit of CRISPR-based genome editing systems inDrosophila. J Genet Genomics, 2015, 42(4):141-149.
doi: 10.1016/j.jgg.2015.02.007 |
[10] | Mohr SE, Smith JA, Shamu CE, Neumüller RA, Perrimon N. RNAi screening comes of age: improved techniques and complementary approaches. Nat Rev Mol Cell Biol, 2014, 15(9):591-600. |
[11] |
Qiao HH, Wang F, Xu RG, Sun J, Zhu R, Mao D, Ren XJ, Wang X, Jia Y, Peng P, Shen D, Liu LP, Chang ZJ, Wang GR, Li S, Ji JY, Liu QF, Ni JQ. An efficient and multiple target transgenic RNAi technique with low toxicity inDrosophila. Nat Commun, 2018, 9(1):4160.
doi: 10.1038/s41467-018-06537-y |
[12] | Ni JQ, Zhou R, Czech B, Liu LP, Holderbaum L, Yang-Zhou D, Shim HS, Tao R, Handler D, Karpowicz P, Binari R, Booker M, Brennecke J, Perkins LA, Hannon GJ, Perrimon N. A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nat Methods, 2011, 8(5):405-407. |
[13] |
Jia Y, Xu RG, Ren XJ, Ewen-Campen B, Rajakumar R, Zirin J, Yang-Zhou D, Zhu RB, Wang F, Mao D, Peng P, Qiao HH, Wang X, Liu LP, Xu BW, Ji JY, Liu QF, Sun J, Perrimon N, Ni JQ. Next-generation CRISPR/Cas9 transcriptional activation in Drosophila using flySAM. Proc Natl Acad Sci USA, 2018, 115(18):4719-4724.
doi: 10.1073/pnas.1800677115 |
[14] | Anderson P. Mutagenesis. Methods Cell Biol, 1995, 48:31-58. |
[15] |
Ren XJ, Holsteens K, Li HY, Sun J, Zhang YF, Liu LP, Liu QF, Ni JQ. Genome editing in Drosophila melanogaster: from basic genome engineering to the multipurpose CRISPR-Cas9 system. Sci China Life Sci, 2017, 60(5):476-489.
doi: 10.1007/s11427-017-9029-9 |
[16] |
Bak RO, Gomez-Ospina N, Porteus MH. Gene editing on center stage. Trends Genet, 2018, 34(8):600-611.
doi: 10.1016/j.tig.2018.05.004 |
[17] |
Gaj T, Gersbach CA, Barbas III CF. ZFN, TALEN, CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 2013, 31(7):397-405.
doi: 10.1016/j.tibtech.2013.04.004 |
[18] |
Musunuru K. The hope and hype of CRISPR-Cas9 genome editing: a review. JAMA Cardiol, 2017, 2(8):914-919.
doi: 10.1001/jamacardio.2017.1713 pmid: 28614576 |
[19] |
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014, 157(6):1262-1278.
doi: 10.1016/j.cell.2014.05.010 |
[20] |
Ren XJ, Sun J, Housden BE, Hu YH, Roesel C, Lin SL, Liu LP, Yang ZH, Mao D, Sun LZ, Wu QJ, Ji JY, Xi JZ, Mohr SE, Xu J, Perrimon N, Ni JQ. Optimized gene editing technology forDrosophila melanogaster using germ line-specific Cas9. Proc Natl Acad Sci USA, 2013, 110(47):19012-19017.
doi: 10.1073/pnas.1318481110 |
[21] | Peng P, Wang X, Shen D, Sun J, Jia Y, Xu RG, Zhu LF, Ni JQ. CRISPR-Cas9 mediated genome editing inDrosophila. Bio Protoc, 2019, 9(2):e3141. |
[22] |
Ren XJ, Yang ZH, Xu J, Sun J, Mao DC, Hu YH, Yang SJ, Qiao HH, Wang X, Hu Q, Deng P, Liu LP, Ji JY, Li JB, Ni JQ. Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters inDrosophila. Cell Rep, 2014, 9(3):1151-1162.
doi: 10.1016/j.celrep.2014.09.044 |
[23] |
Port F, Chen H, Lee T, Bullock S. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering inDrosophila. Proc Natl Acad Sci USA, 2014, 111(29):E2967-E2976.
doi: 10.1073/pnas.1405500111 |
[24] |
Xue ZY, Wu MH, Wen KJ, Ren MD, Long L, Zhang XD, Gao GJ. CRISPR/Cas9 mediates efficient conditional mutagenesis inDrosophila. G3 (Bethesda), 2014, 4(11):2167-73.
doi: 10.1534/g3.114.014159 |
[25] |
Liu QH, Paroo Z. Biochemical principles of small RNA pathways. Annu Rev Biochem, 2010, 79:295-319.
doi: 10.1146/biochem.2010.79.issue-1 |
[26] |
Williams L, Carles CC, Osmont KS, Fletcher JC. A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets theArabidopsis ARF2, ARF3, and ARF4 genes. Proc Natl Acad Sci USA, 2005, 102(27):9703-9708.
doi: 10.1073/pnas.0504029102 |
[27] |
Brand AH, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 1993, 118(2):401-415.
pmid: 8223268 |
[28] |
McGuire SE, Le PT, Osborn AJ, Matsumoto K, Davis RL. Spatiotemporal rescue of memory dysfunction inDrosophila. Science, 2003, 302(5651):1765-1768.
pmid: 14657498 |
[29] |
Lam G, Thummel CS. Inducible expression of double- stranded RNA directs specific genetic interference inDrosophila. Curr Biol, 2000, 10(16):957-963.
pmid: 10985382 |
[30] |
Kennerdell JR, Carthew RW. Heritable gene silencing in Drosophila using double-stranded RNA. Nat Biotechnol, 2000, 18(8):896-898.
pmid: 10932163 |
[31] |
Ni JQ, Markstein M, Binari R, Pfeiffer B, Liu LP, Villalta C, Booker M, Perkins L, Perrimon N. Vector and parameters for targeted transgenic RNA interference inDrosophila melanogaster. Nat Methods, 2008, 5(1):49-51.
doi: 10.1038/nmeth1146 |
[32] | Wang F, Qiao HH, Xu RG, Sun J, Zhu RB, Mao DC, Ni JQ. pNP transgenic RNAi system manual in Drosophila. Bio Protoc, 2019, 9(3):e3158. |
[33] |
Pfeiffer BD, Jenett A, Hammonds AS, Ngo T-TB, Misra S, Murphy C, Scully A, Carlson JW, Wan KH, Laverty TR, Mungall C, Svirskas R, Kadonaga JT, Doe CQ, Eisen MB, Celniker SE, Rubin GM. Tools for neuroanatomy and neurogenetics inDrosophila. Proc Natl Acad Sci USA, 2008, 105(28):9715-9720.
doi: 10.1073/pnas.0803697105 |
[34] |
Rørth P. A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc Natl Acad Sci USA, 1996, 93(22):12418-12422.
doi: 10.1073/pnas.93.22.12418 |
[35] |
Wei P, Xue W, Zhao Y, Ning G, Wang JW. CRISPR-based modular assembly of a UAS-cDNA/ORF plasmid library for more than 5500Drosophila genes conserved in humans. Genome Res, 2020, 30(1):95-106.
doi: 10.1101/gr.250811.119 |
[36] |
Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. TheStreptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res, 2011, 39(21):9275-9282.
doi: 10.1093/nar/gkr606 pmid: 21813460 |
[37] |
Lin SL, Ewen-Campen B, Ni XC, Housden BE, Perrimon N. In vivo transcriptional activation using CRISPR/Cas9 in Drosophila. Genetics, 2015, 201(2):433-442.
doi: 10.1534/genetics.115.181065 |
[38] |
Ewen-Campen B, Yang-Zhou D, Fernandes VR, González DP, Liu LP, Tao R, Ren XJ, Sun J, Hu YH, Zirin J, Mohr SE, Ni JQ, Perrimon N. Optimized strategy for in vivo Cas9-activation in Drosophila. Proc Natl Acad Sci USA, 2017, 114(35):9409-9414.
doi: 10.1073/pnas.1707635114 |
[39] |
Jia Y, Shen D, Wang X, Sun J, Peng P, Xu RG, Xu BW, Ni JQ. FlySAM transgenic CRISPRa system manual. Bio Protoc, 2019, 9(2):e3147.
doi: 10.21769/BioProtoc.3147 pmid: 33654892 |
[40] |
Mao DC, Jia Y, Peng P, Shen D, Ren XJ, Zhu RB, Qiu YH, Han YT, Yu JC, Che QY, Li YT, Lu XY, Liu LP, Wang Z, Liu QF, Sun J, Ni JQ. Enhanced efficiency of flySAM by optimization of sgRNA parameters in Drosophila. G3 (Bethesda), 2020, 10(12):4483-4488.
doi: 10.1534/g3.120.401614 |
[1] | 蒋卓远, 查艳, 石小峰, 张永彪. 神经嵴细胞和神经嵴病及其致病机制的研究进展[J]. 遗传, 2022, 44(2): 117-133. |
[2] | 王海涛, 李亭亭, 黄勋, 马润林, 刘秋月. 遗传修饰技术在绵羊分子设计育种中的应用[J]. 遗传, 2021, 43(6): 580-600. |
[3] | 杨光武, 田嫄. 果蝇F-box基因Ppa促进脂肪储存[J]. 遗传, 2021, 43(6): 615-622. |
[4] | 林红燕, 王煊, 何聪, 周紫玲, 杨旻恺, 文钟灵, 韩洪苇, 陆桂华, 戚金亮, 杨永华. 中药植物紫草天然产物的生物合成及其功能研究进展[J]. 遗传, 2021, 43(5): 459-472. |
[5] | 彭定威, 李瑞强, 曾武, 王敏, 石翾, 曾检华, 刘小红, 陈瑶生, 何祖勇. 编辑MSTN半胱氨酸节基元促进两广小花猪肌肉生长[J]. 遗传, 2021, 43(3): 261-270. |
[6] | 刘学文, 吴红梅, 白瑛, 曾群, 曹泽民, 吴秀山, 唐旻. 钾离子通道蛋白Shaker对果蝇心脏衰老的保护作用[J]. 遗传, 2021, 43(1): 94-99. |
[7] | 王娜, 甲芝莲, 吴强. RFX5调控原钙粘蛋白α基因簇的表达[J]. 遗传, 2020, 42(8): 760-774. |
[8] | 李国玲, 杨善欣, 吴珍芳, 张献伟. 提高CRISPR/Cas9介导的动物基因组精确插入效率 研究进展[J]. 遗传, 2020, 42(7): 641-656. |
[9] | 陈赢男, 陆静. CRISPR/Cas9系统在林木基因编辑中的应用[J]. 遗传, 2020, 42(7): 657-668. |
[10] | 李霞, 施皖, 耿立召, 许建平. CRISPR/Cas核糖核蛋白介导的植物基因组编辑[J]. 遗传, 2020, 42(6): 556-564. |
[11] | 秦瑞英, 魏鹏程. Prime editing引导植物基因组精确编辑新局面[J]. 遗传, 2020, 42(6): 519-523. |
[12] | 刘思远, 易国强, 唐中林, 陈斌. 基于CRISPR/Cas9系统在全基因组范围内筛选功能基因及调控元件研究进展[J]. 遗传, 2020, 42(5): 435-443. |
[13] | 唐连超, 谷峰. CRISPR-Cas基因编辑系统升级:聚焦Cas蛋白和PAM[J]. 遗传, 2020, 42(3): 236-249. |
[14] | 曹俊霞, 王友亮, 王征旭. 精准调控CRISPR/Cas9基因编辑技术研究进展[J]. 遗传, 2020, 42(12): 1168-1177. |
[15] | 杜倍倍, 刘磊, 朱洋洋. RNA结合蛋白Roquin负调控STING依赖的果蝇天然免疫反应[J]. 遗传, 2020, 42(12): 1201-1210. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: