遗传 ›› 2022, Vol. 44 ›› Issue (3): 198-207.doi: 10.16288/j.yczz.21-324
舒甜1,2(), 胡豪畅1,2, 沈才杰1, 林少沂1, 陈晓敏1,2()
收稿日期:
2021-11-07
修回日期:
2021-12-27
出版日期:
2022-03-20
发布日期:
2022-01-10
通讯作者:
陈晓敏
E-mail:shutian08@163.com;chxmin@hotmail.com
作者简介:
舒甜,在读硕士研究生,专业方向:心血管内科。E-mail: Tian Shu1,2(), Haochang Hu1,2, Caijie Shen1, Shaoyi Lin1, Xiaomin Chen1,2()
Received:
2021-11-07
Revised:
2021-12-27
Online:
2022-03-20
Published:
2022-01-10
Contact:
Chen Xiaomin
E-mail:shutian08@163.com;chxmin@hotmail.com
摘要:
肥厚型心肌病(hypertrophic cardiomyopathy,HCM)是一种以左心室肥厚为突出特征的常染色体显性遗传病,其发病率为1/500~1/200。目前已发现超过30个基因的1500种突变与该疾病的发生发展相关,致病基因变异连同修饰基因多态性、环境因素等影响因素发挥作用,使得疾病表型极具异质性,临床表现上从无任何症状到心源性猝死均可发生,病理表型主要包括心肌细胞肥大、排列紊乱及纤维化、心肌缺血等。近年来,许多研究致力于探究HCM基因型对表型的影响, 并基于遗传背景对HCM的治疗方法进行研发。本文以HCM基因型-表型的关联为重点,从HCM的致病基因、关联影响因素和最新治疗手段等多方面综述了HCM的研究进展,以期为研究HCM的发生发展及治疗方向提供遗传学方面的思路。
舒甜, 胡豪畅, 沈才杰, 林少沂, 陈晓敏. 肥厚型心肌病基因型-表型关联研究进展[J]. 遗传, 2022, 44(3): 198-207.
Tian Shu, Haochang Hu, Caijie Shen, Shaoyi Lin, Xiaomin Chen. Research progress of the correlation between genotype and phenotype in hypertrophic cardiomyopathy[J]. Hereditas(Beijing), 2022, 44(3): 198-207.
图1
心肌细胞内各结构上存在的致病基因 肌节是心肌收缩的基本单位,主要由粗肌丝和细肌丝组成,粗细肌丝间的相互滑动产生了肌节的收缩。肌节单位之间由Z盘连接,Z盘是肌节收缩的着力点。肌联蛋白连接了粗肌丝和Z盘,在心肌收缩和舒张中起到了分子弹簧的作用。细胞骨架对维持肌节结构和功能起到重要作用,而钙调节相关蛋白则通过收缩耦联机制影响心肌收缩舒张功能,因此编码粗肌丝的MYBPC3、MYH7、MYL2、MYL3、MYH6,编码细肌丝的TNNT2、TNNI3、TPM1、ACTC1、TNNC,编码Z盘的ACTN1、ACTN2、CSRP3、TCAP、VCL、LBD3、ANKRD1、MYOZ2、TRIM63、FHL1、BAG3,编码肌联蛋白的TTN,编码细胞骨架FLNC、FHOD3和编码钙调节相关蛋白的PLN、CALR3、RYR2、JPH2均可能为HCM的致病基因。"
[1] | 中华医学会心血管病学分会中国成人肥厚型心肌病诊断与治疗指南编写组, 中华心血管病杂志编辑委员会. 中国成人肥厚型心肌病诊断与治疗指南. 中华心血管病杂志, 2017,45(12):1015-1032. |
[2] | Ommen SR, Mital S, Burke MA, Day SM, Deswal A, Elliott P, Evanovich LL, Hung J, Joglar JA, Kantor P, Kimmelstiel C, Kittleson M, Link MS, Maron MS, Martinez MW, Miyake CY, Schaff HV, Semsarian C, Sorajja P. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. J Am Coll Cardiol, 2020,76(25):e159-e240. |
[3] | Walsh R, Thomson KL, Ware JS, Funke BH, Woodley J, McGuire KJ, Mazzarotto F, Blair E, Seller A, Taylor JC, Minikel EV, Consortium EA, MacArthur DG, Farrall M, Cook SA, Watkins H. Reassessment of Mendelian gene pathogenicity using 7, 855 cardiomyopathy cases and 60, 706 reference samples. Genet Med, 2017,19(2):192-203. |
[4] | Alfares AA, Kelly MA, McDermott G, Funke BH, Lebo MS, Baxter SB, Shen J, McLaughlin HM, Clark EH, Babb LJ, Cox SW, DePalma SR, Ho CY, Seidman JG, Seidman CE, Rehm HL. Results of clinical genetic testing of 2, 912 probands with hypertrophic cardiomyopathy: expanded panels offer limited additional sensitivity. Genet Med, 2015,17(11):880-888. |
[5] | Ochoa JP, Sabater-Molina M, Garcia-Pinilla JM, Mogensen J, Restrepo-Córdoba A, Palomino-Doza J, Villacorta E, Martinez-Moreno M, Ramos-Maqueda J, Zorio E, Peña-Peña ML, García-Granja PE, Rodríguez-Palomares JF, Cárdenas-Reyes IJ, de la Torre-Carpente MM, Bautista- Pavés A, Akhtar MM, Cicerchia MN, Bilbao-Quesada R, Mogollón-Jimenez MV, Salazar-Mendiguchía J, Mesa Latorre JM, Arnaez B, Olavarri-Miguel I, Fuentes-Cañamero ME, Lamounier Jr A, , Pérez Ruiz JM, Climent-Payá V, Pérez-Sanchez I, Trujillo-Quintero JP, Lopes LR, Repáraz-Andrade A, Marín-Iglesias R, Rodriguez-Vilela A, Sandín-Fuentes M, Garrote JA, Cortel-Fuster A, Lopez-Garrido M, Fontalba-Romero A, Ripoll-Vera T, Llano-Rivas I, Fernandez-Fernandez X, Isidoro-García M, Garcia- Giustiniani D, Barriales-Villa R, Ortiz-Genga M, García- Pavía P, Elliott PM, Gimeno JR, Monserrat L. Formin homology 2 domain containing 3 (FHOD3) is a genetic basis for hypertrophic cardiomyopathy. J Am Coll Cardiol, 2018,72(20):2457-2467. |
[6] | Valdés-Mas R, Gutiérrez-Fernández A, Gómez J, Coto E, Astudillo A, Puente DA, Reguero JR, Álvarez V, Morís C, León D, Martín M, Puente XS, López-Otín C. Mutations in filamin C cause a new form of familial hypertrophic cardiomyopathy. Nat Commun, 2014,5:5326. |
[7] | Niimura H, Patton KK, McKenna WJ, Soults J, Maron BJ, Seidman JG, Seidman CE. Sarcomere protein gene mutations in hypertrophic cardiomyopathy of the elderly. Circulation, 2002,105(4):446-451. |
[8] | Satoh M, Takahashi M, Sakamoto T, Hiroe M, Marumo F, Kimura A. Structural analysis of the titin gene in hypertrophic cardiomyopathy: identification of a novel disease gene. Biochem Biophys Res Commun, 1999,262(2):411-417. |
[9] | Chiu C, Bagnall RD, Ingles J, Yeates L, Kennerson M, Donald JA, Jormakka M, Lind JM, Semsarian C. Mutations in alpha-actinin-2 cause hypertrophic cardiomyopathy: a genome-wide analysis. J Am Coll Cardiol, 2010,55(11):1127-1135. |
[10] | Geier C, Perrot A, Ozcelik C, Binner P, Counsell D, Hoffmann K, Pilz B, Martiniak Y, Gehmlich K, van der Ven PF, Fürst DO, Vornwald A, von Hodenberg E, Nürnberg P, Scheffold T, Dietz R, Osterziel KJ. Mutations in the human muscle LIM protein gene in families with hypertrophic cardiomyopathy. Circulation, 2003,107(10):1390-1395. |
[11] | Vasile VC, Ommen SR, Edwards WD, Ackerman MJ. A missense mutation in a ubiquitously expressed protein, vinculin, confers susceptibility to hypertrophic cardiomyopathy. Biochem Biophys Res Commun, 2006,345(3):998-1003. |
[12] | Friedrich FW, Wilding BR, Reischmann S, Crocini C, Lang P, Charron P, Müller OJ, McGrath MJ, Vollert I, Hansen A, Linke WA, Hengstenberg C, Bonne G, Morner S, Wichter T, Madeira H, Arbustini E, Eschenhagen T, Mitchell CA, Isnard R, Carrier L. Evidence for FHL1 as a novel disease gene for isolated hypertrophic cardiomyopathy. Hum Mol Genet, 2012,21(14):3237-3254. |
[13] | Osio A, Tan L, Chen SN, Lombardi R, Nagueh SF, Shete S, Roberts R, Willerson JT, Marian AJ. Myozenin 2 is a novel gene for human hypertrophic cardiomyopathy. Circ Res, 2007,100(6):766-768. |
[14] | Eberly LA, Day SM, Ashley EA, Jacoby DL, Jefferies JL, Colan SD, Rossano JW, Semsarian C, Pereira AC, Olivotto I, Ingles J, Seidman CE, Channaoui N, Cirino AL, Han L, Ho CY, Lakdawala NK. Association of race with disease expression and clinical outcomes among patients with hypertrophic cardiomyopathy. JAMA Cardiol, 2020,5(1):83-91. |
[15] | Wu GX, Liu LW, Zhou ZY, Liu J, Wang B, Ruan JY, Yang QL, Kanchwala M, Dai PG, Zhang CN, Wang D, Kang LM, Wang S, Y Hui RT, Zou YB, Xing C, Song L, Wang JZ. East Asian-specific common variant in TNNI3 predisposes to hypertrophic cardiomyopathy. Circulation, 2020,142(21):2086-2089. |
[16] | Vermeer AMC, Clur SB, Blom NA, Wilde AAM, Christiaans I. Penetrance of hypertrophic cardiomyopathy in children who are mutation positive. J Pediatr, 2017,188:91-95. |
[17] | Maurizi N, Michels M, Rowin EJ, Semsarian C, Girolami F, Tomberli B, Cecchi F, Maron MS, Olivotto I, Maron BJ. Clinical course and significance of hypertrophic cardiomyopathy without left ventricular hypertrophy. Circulation, 2019,139(6):830-833. |
[18] | Jensen MK, Havndrup O, Christiansen M, Andersen PS, Diness B, Axelsson A, Skovby F, Køber L, Bundgaard H. Penetrance of hypertrophic cardiomyopathy in children and adolescents: a 12-year follow-up study of clinical screening and predictive genetic testing. Circulation, 2013,127(1):48-54. |
[19] | Captur G, Moon JC. Evolution of hypertrophic cardiomyopathy in sarcomere mutation carriers. Heart, 2016,102(22):1779-1781. |
[20] | van Velzen HG, Schinkel AFL, Baart SJ, Oldenburg RA, Frohn-Mulder IME, van Slegtenhorst MA, Michels M. Outcomes of contemporary family screening in hypertrophic cardiomyopathy. Circ Genom Precis Med, 2018,11(4):e001896. |
[21] | Lorenzini M, Norrish G, Field E, Ochoa JP, Cicerchia M, Akhtar MM, Syrris P, Lopes LR, Kaski JP, Elliott PM. Penetrance of hypertrophic cardiomyopathy in sarcomere protein mutation carriers. J Am Coll Cardiol, 2020,76(5):550-559. |
[22] | Cui H, Schaff HV, Lentz Carvalho J, Nishimura RA, Geske JB, Dearani JA, Lahr BD, Lee AT, Bos JM, Ackerman MJ, Ommen SR, Maleszewski JJ. Myocardial histopathology in patients with obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol, 2021,77(17):2159-2170. |
[23] | Sedaghat-Hamedani F, Kayvanpour E, Tugrul OF, Lai A, Amr A, Haas J, Proctor T, Ehlermann P, Jensen K, Katus HA, Meder B. Clinical outcomes associated with sarcomere mutations in hypertrophic cardiomyopathy: a meta-analysis on 7675 individuals. Clin Res Cardiol, 2018,107(1):30-41. |
[24] | Ho CY, Day SM, Ashley EA, Michels M, Pereira AC, Jacoby D, Cirino AL, Fox JC, Lakdawala NK, Ware JS, Caleshu CA, Helms AS, Colan SD, Girolami F, Cecchi F, Seidman CE, Sajeev G, Signorovitch J, Green EM, Olivotto I. Genotype and lifetime burden of disease in hypertrophic cardiomyopathy: insights from the Sarcomeric Human Cardiomyopathy Registry (SHaRe). Circulation, 2018,138(14):1387-1398. |
[25] | Lafreniere-Roula M, Bolkier Y, Zahavich L, Mathew J, George K, Wilson J, Stephenson EA, Benson LN, Manlhiot C, Mital S. Family screening for hypertrophic cardiomyopathy: Is it time to change practice guidelines? Eur Heart J, 2019,40(45):3672-3681. |
[26] | Lee SP, Ashley EA, Homburger J, Caleshu C, Green EM, Jacoby D, Colan SD, Arteaga-Fernández E, Day SM, Girolami F, Olivotto I, Michels M, Ho CY, Perez MV, Investigators SH. Incident atrial fibrillation is associated with MYH7 sarcomeric gene variation in hypertrophic cardiomyopathy. Circ Heart Fail, 2018,11(9):e005191. |
[27] | Velicki L, Jakovljevic DG, Preveden A, Golubovic M, Bjelobrk M, Ilic A, Stojsic S, Barlocco F, Tafelmeier M, Okwose N, Tesic M, Brennan P, Popovic D, Ristic A, MacGowan GA, Filipovic N, Maier LS, Olivotto I. Genetic determinants of clinical phenotype in hypertrophic cardiomyopathy. BMC Cardiovasc Disord, 2020,20(1):516. |
[28] | De Bortoli M, Vio R, Basso C, Calore M, Minervini G, Angelini A, Melacini P, Vitiello L, Vazza G, Thiene G, Tosatto S, Corrado D, Iliceto S, Rampazzo A, Calore C. Novel missense variant in MYL2 gene associated with hypertrophic cardiomyopathy showing high incidence of restrictive physiology. Circ Genom Precis Med, 2020,13(2): e002824. |
[29] | Liu W, Wei ZK, Zhang YF, Liu Y, Bai RC, Ma CY, Yang J, Sun DD. Identification of three novel pathogenic mutations in sarcomere genes associated with familial hypertrophic cardiomyopathy based on multi-omics study. Clin Chim Acta, 2021,520:43-52. |
[30] | Tran Vu MT, Nguyen TV, Huynh NV, Nguyen Thai HT, Pham Nguyen V, Ho Huynh TD. Presence of hypertrophic cardiomyopathy related gene mutations and clinical manifestations in Vietnamese patients with hypertrophic cardiomyopathy. Circ J, 2019,83(9):1908-1916. |
[31] | Lehman SJ, Tal-Grinspan L, Lynn ML, Strom J, Benitez GE, Anderson ME, Tardiff JC. Chronic calmodulin-kinase II activation drives disease progression in mutation- specific hypertrophic cardiomyopathy. Circulation, 2019,139(12):1517-1529. |
[32] | Janin A, Bessière F, Chauveau S, Chevalier P, Millat G. First identification of homozygous truncating CSRP3 variants in two unrelated cases with hypertrophic cardiomyopathy. Gene, 2018,676:110-116. |
[33] | Salazar-Mendiguchía J, Barriales-Villa R, Lopes LR, Ochoa JP, Rodríguez-Vilela A, Palomino-Doza J, Larrañaga-Moreira JM, Cicerchia M, Cárdenas-Reyes I, García-Giustiniani D, Brögger N, Fernández G, García S, Santiago L, Vélez P, Ortiz-Genga M, Elliott PM, Monserrat L. The p. (Cys150Tyr) variant in CSRP3 is associated with late-onset hypertrophic cardiomyopathy in heterozygous individuals. Eur J Med Genet, 2020,63(12):104079. |
[34] | Landstrom AP, Ackerman MJ. Beyond the cardiac myofilament: hypertrophic cardiomyopathy- associated mutations in genes that encode calcium-handling proteins. Curr Mol Med, 2012,12(5):507-518. |
[35] | Wang JZ, Wang YL, Zou YB, Sun K, Wang ZM, Ding H, Yuan JQ, Wei W, Hou Q, Wang H, Liu X, Zhang HJ, Ji Y, Zhou XL, Sharma RK, Wang DW, Ahmad F, Hui RT, Song L. Malignant effects of multiple rare variants in sarcomere genes on the prognosis of patients with hypertrophic cardiomyopathy. Eur J Heart Fail, 2014,16(9):950-957. |
[36] | Yuan Y, Meng L, Zhou Y, Lu N. Genetic polymorphism of angiotensin-converting enzyme and hypertrophic cardiomyopathy risk: a systematic review and meta- analysis. Medicine (Baltimore), 2017,96(48):e8639. |
[37] | Zhen Z, Gao L, Wang Q, Chen X, Na J, Xu XW, Yuan Y. Angiotensinogen M235T polymorphism and susceptibility to hypertrophic cardiomyopathy in Asian population: a meta analysis. J Renin Angiotensin Aldosterone Syst, 2020,21(4):1470320320978100. |
[38] | Rani B, Kumar A, Bahl A, Sharma R, Prasad R, Khullar M. Renin-angiotensin system gene polymorphisms as potential modifiers of hypertrophic and dilated cardiomyopathy phenotypes. Mol Cell Biochem, 2017,427(1-2):1-11. |
[39] | Wang S, Wang J, Zou Y, Wang J, Wang H, Hui R. Angiotensinogen gene variations and LV outflow obstruction in hypertrophic cardiomyopathy. Herz, 2014,39(2):258-263. |
[40] | Mouton JM, van der Merwe L, Goosen A, Revera M, Brink PA, Moolman-Smook JC, Kinnear C. MYBPH acts as modifier of cardiac hypertrophy in hypertrophic cardiomyopathy (HCM) patients. Hum Genet, 2016,135(5):477-483. |
[41] | Zhang C, Zhang HJ, Wu GX, Luo XL, Zhang CN, Zou YB, Wang H, Hui RT, Wang JZ, Song L. Titin-truncating variants increase the risk of cardiovascular death in patients with hypertrophic cardiomyopathy. Can J Cardiol, 2017,33(10):1292-1297. |
[42] | Zhang XL, Xie J, Zhu SH, Chen YH, Wang L, Xu B. Next-generation sequencing identifies pathogenic and modifier mutations in a consanguineous Chinese family with hypertrophic cardiomyopathy. Medicine (Baltimore), 2017,96(24):e7010. |
[43] | Noyes AM, Zhou AY, Gao G, Gu LZ, Day S, Andrew Wasserstrom J, Dudley SC. Abnormal sodium channel mRNA splicing in hypertrophic cardiomyopathy. Int J Cardiol, 2017,249:282-286. |
[44] | Larsen CM, Ball CA, Hebl VB, Ong KC, Siontis KC, Olson TP, Ackerman MJ, Ommen SR, Allison TG, Geske JB. Effect of body mass index on exercise capacity in patients with hypertrophic cardiomyopathy. Am J Cardiol, 2018,121(1):100-106. |
[45] | Wasserstrum Y, Barriales-Villa R, Fernández-Fernández X, Adler Y, Lotan D, Peled Y, Klempfner R, Kuperstein R, Shlomo N, Sabbag A, Freimark D, Monserrat L, Arad M. The impact of diabetes mellitus on the clinical phenotype of hypertrophic cardiomyopathy. Eur Heart J, 2019,40(21):1671-1677. |
[46] | Harper AR, Goel A, Grace C, Thomson KL, Petersen SE, Xu X, Waring A, Ormondroyd E, Kramer CM, Ho CY, Neubauer S, Tadros R, Ware JS, Bezzina CR, Farrall M, Watkins H. Common genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity. Nature Genetics, 2021,53(2):135-142. |
[47] | Xu HB, Wang J, Yuan JS, Hu FH, Yang WX, Guo C, Luo XL, Liu R, Cui JG, Gao XJ, Chun YS, Qiao SB. Implication of apnea-hypopnea index, a measure of obstructive sleep apnea severity, for atrial fibrillation in patients with hypertrophic cardiomyopathy. J Am Heart Assoc, 2020,9(8):e015013. |
[48] | Fumagalli C, Maurizi N, Day SM, Ashley EA, Michels M, Colan SD, Jacoby D, Marchionni N, Vincent-Tompkins J, Ho CY, Olivotto I, Investigators S. Association of obesity with adverse long-term outcomes in hypertrophic cardiomyopathy. JAMA Cardiol, 2020,5(1):65-72. |
[49] | Ho CY, Day SM, Axelsson A, Russell MW, Zahka K, Lever HM, Pereira AC, Colan SD, Margossian R, Murphy AM, Canter C, Bach RG, Wheeler MT, Rossano JW, Owens AT, Bundgaard H, Benson L, Mestroni L, Taylor MRG, Patel AR, Wilmot I, Thrush P, Vargas JD, Soslow JH, Becker JR, Seidman CE, Lakdawala NK, Cirino AL, Investigators V, Burns KM, McMurray JJV, MacRae CA, Solomon SD, Orav EJ, Braunwald E. Valsartan in early-stage hypertrophic cardiomyopathy: a randomized phase 2 trial. Nat Med, 2021,27(10):1818-1824. |
[50] | Toepfer CN, Garfinkel AC, Venturini G, Wakimoto H, Repetti G, Alamo L, Sharma A, Agarwal R, Ewoldt JF, Cloonan P, Letendre J, Lun M, Olivotto I, Colan S, Ashley E, Jacoby D, Michels M, Redwood CS, Watkins HC, Day SM, Staples JF, Padrón R, Chopra A, Ho CY, Chen CS, Pereira AC, Seidman JG, Seidman CE. Myosin sequestration regulates sarcomere function, cardiomyocyte energetics, and metabolism, informing the pathogenesis of hypertrophic cardiomyopathy. Circulation, 2020,141(10):828-842. |
[51] | Green EM, Wakimoto H, Anderson RL, Evanchik MJ, Gorham JM, Harrison BC, Henze M, Kawas R, Oslob JD, Rodriguez HM, Song Y, Wan W, Leinwand LA, Spudich JA, McDowell RS, Seidman JG, Seidman CE. A small- molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science, 2016,351(6273):617-621. |
[52] | Spertus JA, Fine JT, Elliott P, Ho CY, Olivotto I, Saberi S, Li WY, Dolan C, Reaney M, Sehnert AJ, Jacoby D. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): health status analysis of a randomised, double-blind, placebo- controlled, phase 3 trial. Lancet, 2021,397(10293):2467-2475. |
[53] | Olivotto I, Oreziak A, Barriales-Villa R, Abraham TP, Masri A, Garcia-Pavia P, Saberi S, Lakdawala NK, Wheeler MT, Owens A, Kubanek M, Wojakowski W, Jensen MK, Gimeno-Blanes J, Afshar K, Myers J, Hegde SM, Solomon SD, Sehnert AJ, Zhang D, Li WY, Bhattacharya M, Edelberg JM, Waldman CB, Lester SJ, Wang A, Ho CY, Jacoby D, investigators E-Hs. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet, 2020,396(10253):759-769. |
[54] | Chauvette V, Accad AJ, Georges G, Bouhout I, Garceau P, L'Allier P, Bouchard D. Septal myectomy in the era of genetic testing. J Card Surg, 2021,36(4):1282-1288. |
[55] | Bonaventura J, Norambuena P, Votýpka P, Hnátová H, Adlová R, Macek Jr M, Veselka J. Patients with hypertrophic obstructive cardiomyopathy after alcohol septal ablation have favorable long-term outcome irrespective of their genetic background. Cardiovasc Diagn Ther, 2020,10(2):193-200. |
[56] | Liu LW, Li J, Zuo L, Zhang JZ, Zhou MY, Xu B, Hahn RT, Leon MB, Hsi DH, Ge JB, Zhou XD, Zhang J, Ge SP, Xiong LZ. Percutaneous intramyocardial septal radiofrequency ablation for hypertrophic obstructive cardiomyopathy. J Am Coll Cardiol, 2018,72(16):1898-1909. |
[57] | Ma SH, Jiang WJ, Liu XJ, Lu WJ, Qi T, Wei JJ, Wu FJ, Chang Y, Zhang SY, Song YB, Bai R, Wang JB, Lee AS, Zhang HJ, Wang YM, Lan F. Efficient correction of a hypertrophic cardiomyopathy mutation by ABEmax-NG. Circ Res, 2021,129(10):895-908. |
[1] | 田智琛, 尹晓娟. 诱导多能干细胞在儿童疾病的应用研究进展[J]. 遗传, 2023, 45(1): 42-51. |
[2] | 郝艳, 雷富民. 适应性演化的分子遗传机制:以高海拔适应为例[J]. 遗传, 2022, 44(8): 635-654. |
[3] | 付孟, 李艳. 家马的起源历史与品种驯化特征[J]. 遗传, 2022, 44(3): 216-229. |
[4] | 梁佳琦, 刘畅, 张雯翔, 陈思禹. 肝脏分泌因子与代谢性疾病[J]. 遗传, 2022, 44(10): 853-866. |
[5] | 寇艳妮, 岑山, 李晓宇. LINE-1在肿瘤早期诊断和治疗中的研究与应用[J]. 遗传, 2021, 43(6): 571-579. |
[6] | 朱文静, 刘志玮. MDMPR:小鼠发育代谢表型库[J]. 遗传, 2021, 43(4): 375-384. |
[7] | 何晓红, 蒋琳, 浦亚斌, 赵倩君, 马月辉. 牛、绵羊角的遗传定位及遗传机制研究进展[J]. 遗传, 2021, 43(1): 40-51. |
[8] | 钱国清. 慢性阻塞性肺疾病全基因组关联研究进展[J]. 遗传, 2020, 42(9): 832-846. |
[9] | 张强, 顾明亮. 单细胞测序技术及其在乳腺癌研究中的应用[J]. 遗传, 2020, 42(3): 250-268. |
[10] | 鲍莉雯, 周一叶, 曾凡一. 基于CRISPR/Cas9技术的β-地中海贫血和血友病基因治疗研究进展[J]. 遗传, 2020, 42(10): 949-964. |
[11] | 姜义圣,许执恒. 脑发育疾病及发病机制[J]. 遗传, 2019, 41(9): 801-815. |
[12] | 牛煦然,尹树明,陈曦,邵婷婷,李大力. 基因编辑技术及其在疾病治疗中的研究进展[J]. 遗传, 2019, 41(7): 582-598. |
[13] | 胡伟澎, 李佑平, 张秀清. 基于迁移学习的MHC-I型抗原表位呈递预测[J]. 遗传, 2019, 41(11): 1041-1049. |
[14] | 胡伟娟, 凌宏清, 傅向东. 植物表型组学研究平台建设及技术应用[J]. 遗传, 2019, 41(11): 1060-1066. |
[15] | 王玉杰, 周小坤, 徐丹. 常染色体隐性遗传小头畸形相关蛋白研究进展[J]. 遗传, 2019, 41(10): 905-918. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: