遗传 ›› 2025, Vol. 47 ›› Issue (11): 1186-1196.doi: 10.16288/j.yczz.25-129
收稿日期:2025-05-07
修回日期:2025-07-22
出版日期:2025-11-20
发布日期:2025-08-18
通讯作者:
蔡瑞,博士,副教授,研究方向:猪遗传改良与繁殖技术。E-mail: cairui1663@nwafu.edu.cn作者简介:任佳琳,本科生,专业方向:动物遗传育种与繁殖。E-mail: renjl@nwafu.edu.cn
基金资助:
Jialin Ren(
), Yize Tong, Rui Cai(
)
Received:2025-05-07
Revised:2025-07-22
Published:2025-11-20
Online:2025-08-18
Supported by:摘要:
染色质相关RNA(chromatin-associated RNAs,caRNAs)是一类与染色质结构及功能密切相关的RNA,通过顺式、反式或顺-反式联合的方式与染色质互作,从而调控基因表达,保证细胞过程的有序进行。N6-甲基腺苷(N6-methyladenosine,m6A)是真核生物RNA中普遍存在且动态可逆的一种表观遗传修饰,在多种生物学过程中发挥重要的调控作用。caRNAs的m6A修饰能在转录水平调控染色质可及性与基因表达,维持机体的正常生命功能。本文对m6A修饰的caRNAs与染色质的互作机制及其对基因表达的作用进行了总结,以期为解析基因转录调控的分子机理提供科学依据与思路。
任佳琳, 童依泽, 蔡瑞. 染色质相关RNA的m6A修饰调控染色质可及性与基因转录研究进展[J]. 遗传, 2025, 47(11): 1186-1196.
Jialin Ren, Yize Tong, Rui Cai. Advances of m6A modification of chromatin-associated RNAs regulating chromatin accessibility and gene transcription[J]. Hereditas(Beijing), 2025, 47(11): 1186-1196.
表1
caRNAs m6A修饰机制"
| caRNAs | m6A机制 | m6A水平 | 功能 | 参考文献 |
|---|---|---|---|---|
| 新生RNA(包括pre-mRNA、 PROMPTs、eRNA) | METTL3; METTL14; WTAP | 上调 | 促进新生RNA的合成及有效转录 | [ |
| pre-mRNA Sxl | MTC; YTHDC1 | 下调 | 影响果蝇性别分化 | [ |
| lncRNA XIST | METTL3; YTHDC1 | 上调 | 促进X染色质的失活 | [ |
| lncRNA XIST | METTL14; YTHDF2 | 上调 | 促进lncRNA XIST降解 | [ |
| circRNA | METTL3; METTL14; YTHDF3; FTO | 上调 | 驱动并增强circRNA的翻译 | [ |
| U6 snRNA | METTL16 | 上调 | 影响剪接体的组装或识别 | [ |
| 重复RNA LINE1 | METTL3; YTHDC1; FTO | 上调/下调 | 调控LINE1的生命周期与转座以及基因组中LINE1相邻基因的表达 | [ |
| carRNAs(包括paRNA、eRNA、 重复RNA) | METTL3; YTHDC1 | 上调/下调 | 调控carRNAs的稳定性以及染色质状态和下游基因表达 | [ |
| [1] |
Li X, Fu XD. Chromatin-associated RNAs as facilitators of functional genomic interactions. Nat Rev Genet, 2019, 20(9): 503-519.
pmid: 31160792 |
| [2] |
Wei JB, He C. Chromatin and transcriptional regulation by reversible RNA methylation. Curr Opin Cell Biol, 2021, 70: 109-115.
pmid: 33706173 |
| [3] |
Chen Y, Liang R, Li Y, Jiang LL, Ma D, Luo Q, Song GB. Chromatin accessibility: biological functions, molecular mechanisms and therapeutic application. Signal Transduct Target Ther, 2024, 9(1): 340.
pmid: 39627201 |
| [4] |
Zhang PJ, Wu WY, Chen Q, Chen M. Non-coding RNAs and their integrated networks. J Integr Bioinform, 2019, 16(3): 20190027.
pmid: 31301674 |
| [5] |
Tang J, Wang X, Xiao DS, Liu S, Tao YG. The chromatin- associated RNAs in gene regulation and cancer. Mol Cancer, 2023, 22(1): 27.
pmid: 36750826 |
| [6] |
Incarnato D, Morandi E, Anselmi F, Simon LM, Basile G, Oliviero S. In vivo probing of nascent RNA structures reveals principles of cotranscriptional folding. Nucleic Acids Res, 2017, 45(16): 9716-9725.
pmid: 28934475 |
| [7] |
Niehrs C, Luke B. Regulatory R-loops as facilitators of gene expression and genome stability. Nat Rev Mol Cell Biol, 2020, 21(3): 167-178.
pmid: 32005969 |
| [8] |
Sasso JM, Ambrose BJB, Tenchov R, Datta RS, Basel MT, DeLong RK, Zhou QA. The progress and promise of RNA medicine--an arsenal of targeted treatments. J Med Chem, 2022, 65(10): 6975-7015.
pmid: 35533054 |
| [9] |
Jarrous N. Roles of RNase P and its subunits. Trends Genet, 2017, 33(9): 594-603.
pmid: 28697848 |
| [10] |
Li Y, Syed J, Sugiyama H. RNA-DNA triplex formation by long noncoding RNAs. Cell Chem Biol, 2016, 23(11): 1325-1333.
pmid: 27773629 |
| [11] |
Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science, 2008, 322(5902): 750-756.
pmid: 18974356 |
| [12] |
Hasegawa Y, Brockdorff N, Kawano S, Tsutui K, Tsutui K, Nakagawa S. The matrix protein hnRNP U is required for chromosomal localization of Xist RNA. Dev Cell, 2010, 19(3): 469-476.
pmid: 20833368 |
| [13] |
Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol, 2019, 20(10): 608-624.
pmid: 31520073 |
| [14] |
Shi HL, Wei JB, He C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell, 2019, 74(4): 640-650.
pmid: 31100245 |
| [15] |
Chelmicki T, Roger E, Teissandier A, Dura M, Bonneville L, Rucli S, Dossin F, Fouassier C, Lameiras S, Bourc'his D. m6A RNA methylation regulates the fate of endogenous retroviruses. Nature, 2021, 591(7849): 312-316.
pmid: 33442060 |
| [16] |
Xu WQ, Li JH, He CX, Wen J, Ma HH, Rong BW, Diao JB, Wang LY, Wang JH, Wu FZ, Tan L, Shi YG, Shi Y, Shen HJ. METTL3 regulates heterochromatin in mouse embryonic stem cells. Nature, 2021, 591(7849): 317-321.
pmid: 33505026 |
| [17] |
Wang X, Lu ZK, Gomez A, Hon GC, Yue YN, Han DL, Fu Y, Parisien M, Dai Q, Jia GF, Ren B, Pan T, He C. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature, 2014, 505(7481): 117-120.
pmid: 24284625 |
| [18] |
Wang X, Zhao BS, Roundtree IA, Lu ZK, Han DL, Ma HH, Weng XC, Chen K, Shi HL, He C. N6-methyladenosine modulates messenger RNA translation efficiency. Cell, 2015, 161(6): 1388-1399.
pmid: 26046440 |
| [19] |
Zhou KI, Shi HL, Lyu R, Wylder AC, Matuszek Z, Pan JN, He C, Parisien M, Pan T. Regulation of co-transcriptional pre-mRNA splicing by m6A through the low-complexity protein hnRNPG. Mol Cell, 2019, 76(1): 70-81.e9.
pmid: 31445886 |
| [20] |
Jiang XL, Liu BY, Nie Z, Duan LC, Xiong QX, Jin ZX, Yang CP, Chen YB. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther, 2021, 6(1): 74.
pmid: 33611339 |
| [21] |
Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. Cell, 2017, 169(7): 1187-1200.
pmid: 28622506 |
| [22] |
Ahi EP. Regulation of skeletogenic pathways by m6A RNA modification: a comprehensive review. Calcif Tissue Int, 2025, 116(1): 58.
pmid: 40180675 |
| [23] |
Huang QB, Mo J, Liao ZB, Chen XP, Zhang BX. The RNA m6A writer WTAP in diseases: structure, roles, and mechanisms. Cell Death Dis, 2022, 13(10): 852.
pmid: 36207306 |
| [24] |
Xu WQ, He CX, Kaye EG, Li JH, Mu MD, Nelson GM, Dong L, Wang JH, Wu FZ, Shi YG, Adelman K, Lan F, Shi Y, Shen HJ. Dynamic control of chromatin-associated m6A methylation regulates nascent RNA synthesis. Mol Cell, 2022, 82(6): 1156-1168.e7.
pmid: 35219383 |
| [25] | Gao SY, Lu HG, Wang YH, Yan D. Screening of Drosophila melanogaster RNA m6A modification pathway factors. Hereditas(Beijing), 2025, 47(4): 476-488. |
| 高舒阳, 陆厚光, 王艳花, 严冬. 果蝇RNA m6A修饰通路因子的筛选. 遗传, 2025, 47(4): 476-488. | |
| [26] |
Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M, Jaffrey SR. m6A RNA methylation promotes XIST-mediated transcriptional repression. Nature, 2016, 537(7620): 369-373.
pmid: 27602518 |
| [27] |
Yang X, Zhang S, He CY, Xue P, Zhang LY, He ZR, Zang L, Feng B, Sun J, Zheng MH. METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST. Mol Cancer, 2020, 19(1): 46.
pmid: 32111213 |
| [28] |
Pendleton KE, Chen BB, Liu KQ, Hunter OV, Xie Y, Tu BP, Conrad NK. The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell, 2017, 169(5): 824-835.e14.
pmid: 28525753 |
| [29] |
van Tran N, Ernst FGM, Hawley BR, Zorbas C, Ulryck N, Hackert P, Bohnsack KE, Bohnsack MT, Jaffrey SR, Graille M, Lafontaine DLJ. The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Res, 2019, 47(15): 7719-7733.
pmid: 31328227 |
| [30] |
Pinto R, Vågbø CB, Jakobsson ME, Kim Y, Baltissen MP, O'Donohue MF, Guzmán UH, Małecki JM, Wu J, Kirpekar F, Olsen JV, Gleizes PE, Vermeulen M, Leidel SA, Slupphaug G, Falnes PØ. The human methyltransferase ZCCHC4 catalyses N6-methyladenosine modification of 28S ribosomal RNA. Nucleic Acids Res, 2020, 48(2): 830-846.
pmid: 31799605 |
| [31] |
Warda AS, Kretschmer J, Hackert P, Lenz C, Urlaub H, Höbartner C, Sloan KE, Bohnsack MT. Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep, 2017, 18(11): 2004-2014.
pmid: 29051200 |
| [32] |
Zhou C, Molinie B, Daneshvar K, Pondick JV, Wang JK, Van Wittenberghe N, Xing Y, Giallourakis CC, Mullen AC. Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep, 2017, 20(9): 2262-2276.
pmid: 28854373 |
| [33] |
Yang Y, Fan XJ, Mao MW, Song XW, Wu P, Zhang Y, Jin YF, Yang Y, Chen LL, Wang Y, Wong CC, Xiao XS, Wang ZF. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res, 2017, 27(5): 626-641.
pmid: 28281539 |
| [34] |
Wei JB, Yu XB, Yang L, Liu XL, Gao BY, Huang BX, Dou XY, Liu J, Zou ZY, Cui XL, Zhang LS, Zhao XS, Liu QZ, He PC, Sepich-Poore C, Zhong N, Liu WQ, Li YH, Kou XC, Zhao YH, Wu Y, Cheng XJ, Chen C, An YM, Dong XY, Wang HY, Shu Q, Hao ZY, Duan T, He YY, Li XK, Gao SR, Gao YW, He C. FTO mediates LINE1 m6A demethylation and chromatin regulation in mESCs and mouse development. Science, 2022, 376(6596): 968-973.
pmid: 35511947 |
| [35] | Zhang A, Cen S, Li XY. N6-adenosine methylation and the regulatory mechanism on LINE-1. Hereditas(Beijing), 2024, 46(3): 209-218. |
| 张傲, 岑山, 李晓宇. N6-腺苷甲基化修饰及其对LINE-1的调控机制. 遗传, 2024, 46(3): 209-218. | |
| [36] |
Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, Wang X, Ma HL, Huang CM, Yang Y, Huang N, Jiang GB, Wang HL, Zhou Q, Wang XJ, Zhao YL, Yang YG. Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol Cell, 2016, 61(4): 507-519.
pmid: 26876937 |
| [37] |
Liu J, Dou XY, Chen CY, Chen C, Liu C, Xu MM, Zhao SQ, Shen B, Gao YW, Han DL, He C. N6-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science, 2020, 367(6477): 580-586.
pmid: 31949099 |
| [38] |
Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Tillo D, Field Y, LeProust EM, Hughes TR, Lieb JD, Widom J, Segal E. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature, 2009, 458(7236): 362-366.
pmid: 19092803 |
| [39] |
Schalch T, Steiner FA. Structure of centromere chromatin: from nucleosome to chromosomal architecture. Chromosoma, 2017, 126(4): 443-455.
pmid: 27858158 |
| [40] | Peng J, Zhang HQ. Beauty of chromatin structure: chromatin accessibility. Chin J Biochem Mol Biol, 2022, 38(10): 1269-1284. |
| 彭建, 张宏权. 染色质结构之美——染色质可及性. 中国生物化学与分子生物学报, 2022, 38(10): 1269-1284. | |
| [41] |
Klemm SL, Shipony Z, Greenleaf WJ. Chromatin accessibility and the regulatory epigenome. Nat Rev Genet, 2019, 20(4): 207-220.
pmid: 30675018 |
| [42] |
Mishra LN, Hayes JJ. A nucleosome-free region locally abrogates histone H1-dependent restriction of linker DNA accessibility in chromatin. J Biol Chem, 2018, 293(50): 19191-19200.
pmid: 30373774 |
| [43] | Meersseman G, Pennings S, Bradbury EM. Chromatosome positioning on assembled long chromatin: linker histones affect nucleosome placement on 5S rDNA. J Mol Biol, 1991, 220(1): 89-100. |
| [44] |
Woodcock CL, Skoultchi AI, Fan YH. Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res, 2006, 14(1): 17-25.
pmid: 16506093 |
| [45] |
Choi JK, Howe LJ. Histone acetylation: truth of consequences? Biochem Cell Biol, 2009, 87(1): 139-150.
pmid: 19234530 |
| [46] |
Grunstein M. Histone acetylation in chromatin structure and transcription. Nature, 1997, 389(6649): 349-352.
pmid: 9311776 |
| [47] |
Dou CL, Wu LH, Zhang JJ, He HA, Xu T, Yu ZS, Su P, Zhang X, Wang JL, Miao YL, Zhou JL. The transcriptional activator Klf5 recruits p300-mediated H3K27ac for maintaining trophoblast stem cell pluripotency. J Mol Cell Biol, 2024, 15(7): mjad045.
pmid: 37533201 |
| [48] |
Zhang D, Tang ZY, Huang H, Zhou GL, Cui C, Weng YJ, Liu WC, Kim S, Lee S, Perez-Neut M, Ding J, Czyz D, Hu R, Ye Z, He MM, Zheng YG, Shuman HA, Dai LZ, Ren B, Roeder RG, Becker L, Zhao YM. Metabolic regulation of gene expression by histone lactylation. Nature, 2019, 574(7779): 575-580.
pmid: 31645732 |
| [49] |
Jing YH, Ding DB, Tian GF, Kwan KCJ, Liu Z, Ishibashi T, Li XD. Semisynthesis of site-specifically succinylated histone reveals that succinylation regulates nucleosome unwrapping rate and DNA accessibility. Nucleic Acids Res, 2020, 48(17): 9538-9549.
pmid: 32766790 |
| [50] |
Tan MJ, Luo H, Lee S, Jin FL, Yang JS, Montellier E, Buchou T, Cheng ZY, Rousseaux S, Rajagopal N, Lu ZK, Ye Z, Zhu Q, Wysocka J, Ye Y, Khochbin S, Ren B, Zhao YM. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell, 2011, 146(6): 1016-1028.
pmid: 21925322 |
| [51] |
Liu XY, Wang CF, Liu WQ, Li JY, Li C, Kou XC, Chen JY, Zhao YH, Gao HB, Wang H, Zhang Y, Gao YW, Gao SR. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature, 2016, 537(7621): 558-562.
pmid: 27626379 |
| [52] |
North JA, Šimon M, Ferdinand MB, Shoffner MA, Picking JW, Howard CJ, Mooney AM, van Noort J, Poirier MG, Ottesen JJ. Histone H3 phosphorylation near the nucleosome dyad alters chromatin structure. Nucleic Acids Res, 2014, 42(8): 4922-4933.
pmid: 24561803 |
| [53] |
Brehove M, Wang T, North J, Luo Y, Dreher SJ, Shimko JC, Ottesen JJ, Luger K, Poirier MG. Histone core phosphorylation regulates DNA accessibility. J Biol Chem, 2015, 290(37): 22612-22621.
pmid: 26175159 |
| [54] |
Barbour H, Daou S, Hendzel M, Affar EB. Polycomb group-mediated histone H2A monoubiquitination in epigenome regulation and nuclear processes. Nat Commun, 2020, 11(1): 5947.
pmid: 33230107 |
| [55] |
Zhang L, Li HT, Shereda R, Lu QJ, Weisenberger DJ, O'Connell C, Machida K, An W, Lenz HJ, El-Khoueiry A, Jones PA, Liu MM, Liang GN. DNMT and EZH2 inhibitors synergize to activate therapeutic targets in hepatocellular carcinoma. Cancer Lett, 2022, 548: 215899.
pmid: 36087682 |
| [56] |
Deng S, Zhang JL, Su JC, Zuo ZX, Zeng LX, Liu KJ, Zheng YF, Huang XD, Bai RH, Zhuang LS, Ye Y, Li M, Pan L, Deng J, Wu GD, Li R, Zhang SP, Wu C, Lin DX, Chen JJ, Zheng J. RNA m6A regulates transcription via DNA demethylation and chromatin accessibility. Nat Genet, 2022, 54(9): 1427-1437.
pmid: 36071173 |
| [57] |
Shao W, Bi XJ, Pan YX, Gao BY, Wu J, Yin YF, Liu ZM, Peng MY, Zhang WH, Jiang X, Ren WL, Xu YH, Wu ZY, Wang KL, Zhan G, Lu JY, Han X, Li T, Wang JL, Li GH, Deng HT, Li B, Shen XH. Phase separation of RNA-binding protein promotes polymerase binding and transcription. Nat Chem Biol, 2022, 18(1): 70-80.
pmid: 34916619 |
| [58] |
Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 2012, 485(7398): 376-380.
pmid: 22495300 |
| [59] |
Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 2014, 159(7): 1665-1680.
pmid: 25497547 |
| [60] |
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 2009, 326(5950): 289-293.
pmid: 19815776 |
| [61] |
Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA. Formation of chromosomal domains by loop extrusion. Cell Rep, 2016, 15(9): 2038-2049.
pmid: 27210764 |
| [62] |
Xie LQ, Dong P, Qi YF, Hsieh THS, English BP, Jung S, Chen XQ, De Marzio M, Casellas R, Chang HY, Zhang B, Tjian R, Liu Z. BRD2 compartmentalizes the accessible genome. Nat Genet, 2022, 54(4): 481-491.
pmid: 35410381 |
| [63] |
Vermunt MW, Zhang D, Blobel GA. The interdependence of gene-regulatory elements and the 3D genome. J Cell Biol, 2019, 218(1): 12-26.
pmid: 30442643 |
| [64] |
Li Y, Xia LJ, Tan KF, Ye XD, Zuo ZX, Li MC, Xiao R, Wang ZH, Liu XN, Deng MQ, Cui JR, Yang MT, Luo QZ, Liu S, Cao X, Zhu HR, Liu TQ, Hu JX, Shi JF, Xiao S, Xia LX. N6-methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2. Nat Genet, 2020, 52(9): 870-877.
pmid: 32778823 |
| [65] |
Huang HL, Weng HY, Zhou KR, Wu T, Zhao BS, Sun ML, Chen ZH, Deng XL, Xiao G, Auer F, Klemm L, Wu HZ, Zuo ZX, Qin X, Dong YZ, Zhou YL, Qin HJ, Tao S, Du J, Liu J, Lu ZK, Yin H, Mesquita A, Yuan CL, Hu YC, Sun WJ, Su R, Dong L, Shen C, Li CY, Qing Y, Jiang X, Wu XW, Sun M, Guan JL, Qu LH, Wei MJ, Müschen M, Huang G, He C, Yang JH, Chen JJ. Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature, 2019, 567(7748): 414-419.
pmid: 30867593 |
| [66] |
Yang X, Liu QL, Xu W, Zhang YC, Yang Y, Ju LF, Chen J, Chen YS, Li K, Ren J, Sun QW, Yang YG. m6A promotes R-loop formation to facilitate transcription termination. Cell Res, 2019, 29(12): 1035-1038.
pmid: 31606733 |
| [67] |
Hao JD, Liu QL, Liu MX, Yang X, Wang LM, Su SY, Xiao W, Zhang MQ, Zhang YC, Zhang L, Chen YS, Yang YG, Ren J. DDX21 mediates co-transcriptional RNA m6A modification to promote transcription termination and genome stability. Mol Cell, 2024, 84(9): 1711-1726.e11.
pmid: 38569554 |
| [68] |
Jones AN, Tikhaia E, Mourão A, Sattler M. Structural effects of m6A modification of the Xist a-repeat AUCG tetraloop and its recognition by YTHDC1. Nucleic Acids Res, 2022, 50(4): 2350-2362.
pmid: 35166835 |
| [69] |
Lee JH, Wang RY, Xiong F, Krakowiak J, Liao ZA, Nguyen PT, Moroz-Omori EV, Shao JF, Zhu XY, Bolt MJ, Wu HY, Singh PK, Bi MJ, Shi CJ, Jamal N, Li GJ, Mistry R, Jung SY, Tsai KL, Ferreon JC, Stossi F, Caflisch A, Liu ZJ, Mancini MA, Li WB. Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation. Mol Cell, 2021, 81(16): 3368-3385.e9.
pmid: 34375583 |
| [70] |
Li R, Zhao HZ, Huang XD, Zhang JL, Bai RH, Zhuang LS, Wen SJ, Wu SJ, Zhou QB, Li M, Zeng LX, Zhang SP, Deng S, Su JC, Zuo ZX, Chen RF, Lin DX, Zheng J. Super-enhancer RNA m6A promotes local chromatin accessibility and oncogene transcription in pancreatic ductal adenocarcinoma. Nat Genet, 2023, 55(12): 2224-2234.
pmid: 37957340 |
| [71] |
Wang X, Ma R, Zhang XL, Cui L, Ding YF, Shi WM, Guo CY, Shi YL. Crosstalk between N6-methyladenosine modification and circular RNAs: current understanding and future directions. Mol Cancer, 2021, 20(1): 121.
pmid: 34560891 |
| [72] |
Pilala KM, Panoutsopoulou K, Papadimitriou MA, Soureas K, Scorilas A, Avgeris M. Exploring the methyl-verse: dynamic interplay of epigenome and m6A epitranscriptome. Mol Ther, 2025, 33(2): 447-464.
pmid: 39659016 |
| [1] | 王纪龙, 李青, 战廷正. 自转录活性调节区测序技术在增强子发现研究中的应用[J]. 遗传, 2024, 46(8): 589-602. |
| [2] | 张傲, 岑山, 李晓宇. N6-腺苷甲基化修饰及其对LINE-1的调控机制[J]. 遗传, 2024, 46(3): 209-218. |
| [3] | 尤琳琳, 张余. 细菌转录终止的分子机制研究进展[J]. 遗传, 2024, 46(12): 982-994. |
| [4] | 王承贤, 容益康, 崔敏. 果蝇限制端粒转座子的分子机制[J]. 遗传, 2023, 45(3): 221-228. |
| [5] | 吴丹丹, 朱明昆, 方忠艳, 马伟. 植物B染色体的分子结构组成及遗传机制研究进展[J]. 遗传, 2022, 44(9): 772-782. |
| [6] | 张元, 赵语婷, 庄乐南, 贺津. 转录中介体复合物在心血管发育和疾病中的转录调控作用[J]. 遗传, 2022, 44(5): 383-397. |
| [7] | 刘国芳, 任沛东, 叶文新, 陆光涛. 十字花科黑腐病菌中转录因子HpaR1与Clp调控一个糖苷水解酶基因表达的分析[J]. 遗传, 2021, 43(9): 910-920. |
| [8] | 王天一, 王应祥, 尤辰江. 植物PHD结构域蛋白的结构与功能特性[J]. 遗传, 2021, 43(4): 323-339. |
| [9] | 刘国芳, 王欣欣, 苏辉昭, 陆光涛. 细菌GntR家族转录调控因子的研究进展[J]. 遗传, 2021, 43(1): 66-73. |
| [10] | 邱晓芬, 汤冬娥, 虞海燕, 廖秋燕, 胡芷洋, 周俊, 赵鑫, 何慧燕, 梁灼健, 许承明, 杨明, 戴勇. 基于单细胞ATAC测序技术对18-三体综合征染色质开放性区域转录因子的分析[J]. 遗传, 2021, 43(1): 74-83. |
| [11] | 任恋, 吴秀山, 李永青. 组蛋白去乙酰化酶在调节心肌肥大过程中的作用机制[J]. 遗传, 2020, 42(6): 536-547. |
| [12] | 陈敏, 张峥, 孟紫媛, 张学军. ATAC-seq在复杂疾病研究中的应用进展[J]. 遗传, 2020, 42(4): 347-353. |
| [13] | 高晓萌, 张治华. 生物大分子“液-液相分离”调控染色质三维空间结构和功能[J]. 遗传, 2020, 42(1): 45-56. |
| [14] | 张雨, 方玉达. Cohesin结构及功能研究进展[J]. 遗传, 2020, 42(1): 57-72. |
| [15] | 郑晓飞,黄海燕,吴强. 染色质架构蛋白CTCF调控UGT1基因簇的表达[J]. 遗传, 2019, 41(6): 509-523. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: