优博专栏 栏目所有文章列表(按年度、期号倒序)
    一年内发表的文章 |  两年内 |  三年内 |  全部
Please wait a minute...
选择: 显示/隐藏图片
1. 大豆泛基因组研究进展
刘羽诚, 申妍婷, 田志喜
遗传    2024, 46 (3): 183-198.   DOI: 10.16288/j.yczz.23-321
摘要362)   HTML20)    PDF(pc) (902KB)(315)    收藏

人工驯化为农业发展提供了原始驱动力,也深刻地改变了许多动植物的遗传背景。伴随组学大数据理论和技术体系的发展,作物基因组研究已迈入泛基因组时代。借助泛基因组的研究思路,通过多基因组间的比较和整合,能够评估物种遗传信息上界和下界,认知物种的遗传多样性全貌。此外,将泛基因组与染色体大尺度结构变异、群体高通量测序及多层次组学数据相结合,可以进行更为深入的性状-遗传机制解析。大豆(Glycine max (L.) Merr.)是重要的粮油经济作物,大豆产能关乎国家粮食安全。对大豆遗传背景形成、重要农艺性状关键位点的解析,是实现更高效的大豆育种改良的前提。本文首先对泛基因组学的核心问题进行了阐述,解释了从头组装/比对组装、迭代式组装和图基因组等泛基因组研究策略的演变历程和各自特征;接着对作物泛基因组研究的热点问题进行了概括,并且以大豆为例详细阐释了包括类群选择、泛基因组构建、数据挖掘等方面在内的泛基因组研究的开展思路,着重说明染色体结构变异在大豆演化/驯化历程中的贡献及其在农艺性状遗传基础挖掘上的价值;最后讨论了图泛基因组在数据整合、结构变异计算方面的应用前景。本文对作物泛基因组未来的发展趋势进行了展望,以期为作物基因组学及数据科学研究提供参考。

图表 | 参考文献 | 相关文章 | 多维度评价 | 评论0
2. 水稻分蘖氮响应调控机理研究进展
刘永强, 李威威, 刘昕禹, 储成才
遗传    2023, 45 (5): 367-378.   DOI: 10.16288/j.yczz.23-084
摘要646)   HTML1223)    PDF(pc) (698KB)(872)    收藏

氮肥是作物产量增加最主要的驱动因素,然而氮肥滥用会造成生态环境的严重破坏。因此,提高作物氮素利用效率(nitrogen use efficiency,NUE)对未来农业可持续发展至关重要。产量性状对氮素的敏感性是衡量作物氮素利用效率的重要指标。禾本科作物的分蘖数、穗粒数和粒重是产量的直接决定因子,虽然影响三者本身的分子机制已有大量研究,但氮素对这些性状的调控机理仍知之甚少。分蘖数是对氮素响应最为敏感的性状之一,也是氮肥促进作物增产的关键要素。因此,研究氮素如何调控水稻的分蘖发育对于提高作物产量尤为重要。本文总结了水稻氮素利用效率的影响因素和分蘖发育的调控机理,聚焦氮素如何调控水稻分蘖发育的机制,并对该领域未来研究工作进行了展望,以期为作物氮高效精准改良提供参考。

图表 | 参考文献 | 相关文章 | 多维度评价 | 评论0
3. 跨组织线粒体应激信号交流调控机体衰老研究进展
张茜, 王子豪, 田烨
遗传    2023, 45 (3): 187-197.   DOI: 10.16288/j.yczz.22-416
摘要509)   HTML1031)    PDF(pc) (767KB)(388)    收藏

线粒体内蛋白质稳态的平衡对于细胞正常的生理功能非常关键。线粒体蛋白稳态失衡时,细胞会启动应激反应机制,即线粒体未折叠蛋白反应(mitochondrial unfolded protein response,UPRmt),修复线粒体功能,平衡细胞内稳态。尽管线粒体的严重损伤对机体是有害的,但在线虫(Caenorhabditis elegans)、果蝇(Drosophila melanogaste)及小鼠(Mus musculus)中都有研究表明线粒体的轻微损伤可以通过激活UPRmt,促进寿命延长。有趣的是,在没有直接经历线粒体损伤的细胞或组织中,UPRmt也能以非自主方式被诱导。不同组织间可以通过名为“mitokine”的细胞因子进行UPRmt的跨组织调控,系统性地协调机体整体的压力适应能力和抗衰老能力。该调控机制与衰老相关神经退行性疾病、癌症等多种疾病密切相关,近年来有关研究与日俱增。本文系统总结了线粒体应激及其组织间通讯的机制,并介绍了跨组织线粒体应激交流信号“mitokine”调控衰老进程的最新研究进展,以期为跨组织信号调控和机体衰老等研究提供参考。

图表 | 参考文献 | 相关文章 | 多维度评价 | 评论0
4. 适应性演化的分子遗传机制:以高海拔适应为例
郝艳, 雷富民
遗传    2022, 44 (8): 635-654.   DOI: 10.16288/j.yczz.22-108
摘要868)   HTML845)    PDF(pc) (1039KB)(1021)    收藏

自达尔文时代起,解析适应性演化的机制一直是进化生物学和生态学领域研究最重要的科学问题之一。适应性演化通常指在自然选择驱动下,物种为提高适合度而演化出特定的表型。表型的适应表现在形态、生理生化、组织学、行为学等多个层级。随着分子生物学和测序技术的发展,越来越多的研究揭示了适应性复杂性状的遗传基础。研究适应性演化的分子遗传机制有助于理解塑造生物多样性的进化驱动力以及阐明基因型、表型和环境之间的关联关系。目前已有主效基因、超基因、多基因遗传、非编码区调控、重复序列调控、基因渐渗等多种假说可以解释适应性演化的遗传机制。高海拔极端环境的强选择压力极大地促进了物种表型和遗传适应的发生,对多组学数据的剖析为物种适应性演化提供了新的见解。本文对适应性演化的遗传机制、高海拔极端环境适应研究进展以及目前面临的主要挑战进行了综述,并对未来的发展趋势进行了展望,以期为该领域的科研人员提供参考。

图表 | 参考文献 | 相关文章 | 多维度评价 | 评论0
5. 胰岛beta细胞再生研究进展
赵欢, 周斌
遗传    2022, 44 (5): 370-382.   DOI: 10.16288/j.yczz.22-072
摘要761)   HTML834)    PDF(pc) (738KB)(476)    收藏

胰岛beta细胞分泌胰岛素调控体内血糖水平,胰岛beta细胞数量减少会导致糖尿病的发生。胰岛移植是目前治疗糖尿病的有效方法,但是目前仍然面临供体短缺等巨大障碍,因此研究胰岛beta细胞再生对于糖尿病的临床治疗具有深远意义。beta细胞的再生来源主要包括内源性beta细胞增殖、多能干细胞分化和其他非beta细胞的转分化。成体是否存在内源性胰腺干细胞依然是领域内亟待解决的重要科学问题之一。本文总结了与胰岛beta细胞再生相关的研究发现与进展,并讨论了内源性胰岛beta细胞增殖、诱导多能干细胞分化、非胰岛beta细胞重编程等方法在糖尿病治疗中需要注意的问题和潜在应用前景。

图表 | 参考文献 | 相关文章 | 多维度评价 | 评论0
6. 转座元件、表观遗传调控与细胞命运决定
何江平, 陈捷凯
遗传    2021, 43 (9): 822-834.   DOI: 10.16288/j.yczz.21-113
摘要1090)   HTML1052)    PDF(pc) (833KB)(1264)    收藏

转座元件是哺乳动物基因组内含量最多的元素。尽管转座元件的存在对基因组稳定性具有潜在的危险,但它们同时还是潜在的基因调控序列、蛋白质编码序列和染色质结构序列,并参与物种进化过程。因此,基因组中转座元件的有害性和有益性保持着谨慎的平衡,并且这种平衡主要由表观遗传修饰来调控。本文详细介绍了异染色质类型表观遗传修饰如H3K9me3和DNA甲基化在转座元件沉默中的功能;转座元件作为增强子元件富集激活型表观遗传修饰如H3K4me1和H3K27ac,以及作为转录因子结合靶点、染色质构象锚点等方式参与基因表达调控的模式;从体内胚胎发育到体外细胞命运转变,阐述了转座元件在细胞命运决定中的潜在功能及作用方式;最后,对转座元件领域研究存在的挑战及潜在解决方法提出了见解。总之,本文对转座元件与表观遗传、基因表达调控以及细胞命运决定等方面的研究及存在的问题进行了较全面的综述,旨在为相关领域的研究人员提供参考。

图表 | 参考文献 | 相关文章 | 多维度评价 | 评论0
7. 双子叶植物顶端弯钩发育的调控机制
曹珉, 徐通达
遗传    2021, 43 (8): 723-736.   DOI: 10.16288/j.yczz.21-105
摘要1079)   HTML1021)    PDF(pc) (780KB)(722)    收藏

双子叶植物种子在土壤中萌发后,其下胚轴顶端会形成弯钩的特化结构,保护子叶和顶端分生组织在破土过程中不受土壤机械力的破坏,保证幼苗顺利破土。顶端弯钩的发育过程分为弯钩形成、维持及打开3个阶段,其核心在于内外两侧细胞的差异性生长导致弯钩结构。近年来研究表明,植物激素及环境信号对顶端弯钩发育各个过程起着至关重要的调控作用。然而,顶端弯钩两侧细胞不对称生长如何被精准调控的分子机制目前仍不十分清楚。本文综述了近年来顶端弯钩发育调控机制的研究进展,并着重阐述了植物激素生长素在顶端弯钩发育中的关键作用及其分子机制,并对该领域未来的研究方向进行了展望,以期为相关领域的科研人员全面了解植物激素信号相互作用的模式提供参考。

图表 | 参考文献 | 相关文章 | 多维度评价 | 评论0