[1] | Chandrashekar J , Hoon MA , Ryba NJP , Zuker CS . The receptors and cells for mammalian taste . Nature, 2006, 444( 7117): 288- 294. | [2] | Chaudhari N , Roper SD . The cell biology of taste . J Cell Biol, 2010, 190( 3): 285- 296. | [3] | Breslin PAS . An evolutionary perspective on food and human taste . Curr Biol, 2013, 23( 9): R409- R418. | [4] | Munger SD , Meyerhof W . The molecular basis of gustatory transduction. In: Doty R L, ed. Handbook of Olfaction and Gustation. Oxford: Wiley-Blackwell, 2015: 685- 700. | [5] | Chen XK , Gabitto M , Peng YQ , Ryba NJP , Zuker CS . A gustotopic map of taste qualities in the mammalian brain . Science, 2011, 333( 6047): 1262- 1266. | [6] | Fujikura K . Multiple loss-of-function variants of taste receptors in modern humans . Sci Rep, 2015, 5: 12349. | [7] | Wang XX , Thomas SD , Zhang JZ . Relaxation of selective constraint and loss of function in the evolution of human bitter taste receptor genes . Hum Mol Genet, 2004, 13( 21): 2671- 2678. | [8] | Feng P , Zheng JS , Rossiter SJ , Wang D , Zhao HB . Massive losses of taste receptor genes in toothed and baleen whales . Genome Biol Evol, 2014, 6( 6): 1254- 65. | [9] | Zhao HB , Li JW , Zhang JZ . Molecular evidence for the loss of three basic tastes in penguins . Curr Biol, 2015, 25( 4): R141- R142. | [10] | Behrens M , Korsching SI , Meyerhof W . Tuning properties of avian and frog bitter taste receptors dynamically fit gene repertoire sizes . Mol Biol Evol, 2014, 31( 12): 3216- 3227. | [11] | Hayakawa T , Suzuki-Hashido N , Matsui A , Go Y . Frequent expansions of the bitter taste receptor gene repertoire during evolution of mammals in the Euarchontoglires clade . Mol Biol Evol, 2014, 31( 8): 2018- 2031. | [12] | Zhong HM , Shang S , Wu XX , Chen J , Zhu WC , Yan JK , Li HT , Zhang HH . Genomic evidence of bitter taste in snakes and phylogenetic analysis of bitter taste receptor genes in reptiles . PeerJ, 2017, 5: e3708. | [13] | Baldwin MW , Toda Y , Nakagita T , O'Connell MJ, Klasing KC, Misaka T, Edwards SV, Liberles SD. Sensory biology. Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor . Science, 2014, 345( 6199): 929- 933. | [14] | Li DY , Zhang JZ . Diet shapes the evolution of the vertebrate bitter taste receptor gene repertoire . Mol Biol Evol, 2014, 31( 2): 303- 309. | [15] | Dong D , Jones G , Zhang SY . Dynamic evolution of bitter taste receptor |
[1] |
姜明亮, 郎红, 李晓楠, 祖野, 赵靖, 彭沈凌, 刘振, 战宗祥, 朴钟云. 植物孤基因研究进展[J]. 遗传, 2022, 44(8): 682-694. |
[2] |
巴恒星, 胡鹏飞, 李春义. 鹿科动物基因组学研究进展[J]. 遗传, 2021, 43(4): 308-322. |
[3] |
吕孟冈, 刘艾嘉, 李庆伟, 苏鹏. RHR转录因子家族起源、功能以及进化机制的研究进展[J]. 遗传, 2021, 43(3): 215-225. |
[4] |
章誉兴, 吴宏, 于黎. 哺乳动物毛色调控机制及其适应性进化研究进展[J]. 遗传, 2021, 43(2): 118-133. |
[5] |
罗鑫, 宿兵. 三维基因组分析点亮人类大脑进化之谜[J]. 遗传, 2021, 43(2): 105-107. |
[6] |
朱医高, 李军, 逄越, 李庆伟. 七鳃鳗:生物进化和疾病研究的重要模式动物[J]. 遗传, 2020, 42(9): 847-857. |
[7] |
胡风越, 王克剑. STEME系统:一种助力体内定向进化的新工具[J]. 遗传, 2020, 42(3): 231-235. |
[8] |
唐连超, 谷峰. CRISPR-Cas基因编辑系统升级:聚焦Cas蛋白和PAM[J]. 遗传, 2020, 42(3): 236-249. |
[9] |
梅志超, 位竹君, 于佳慧, 冀凤丹, 解莉楠. 多组学关联分析揭示表观等位基因在拟南芥环境适应性进化中的作用及机制[J]. 遗传, 2020, 42(3): 321-331. |
[10] |
彭威, 冯蒙洁, 陈皓, 韩宝瑜. 双翅目昆虫基因组研究进展[J]. 遗传, 2020, 42(11): 1093-1109. |
[11] |
何超,沈文龙,李平,张彦,曾晶,殷作明,赵志虎. Alu元件在染色质三维结构层次上的生物信息学分析[J]. 遗传, 2019, 41(3): 254-261. |
[12] |
孟玉,杨若林. 基于基因家族大小的比较研究脊椎动物的适应性进化[J]. 遗传, 2019, 41(2): 158-174. |
[13] |
邓雯文,龙梅,杨盛智,邹立扣. β-内酰胺酶耐药基因blaOKP进化及其侧翼序列特征研究[J]. 遗传, 2018, 40(7): 585-592. |
[14] |
许磊,陈文,司国阳,黄艺园,林毅,蔡永萍,高俊山. 陆地棉GST基因家族全基因组分析[J]. 遗传, 2017, 39(8): 737-752. |
[15] |
蓝洋,胡江涛,张玉娟. 化学计量基因组学研究进展[J]. 遗传, 2017, 39(2): 89-97. |
|