[1] 曾宪坤. 磷的农业化学 (Ⅱ). 磷肥与复肥, 1999, 14(2): 63-69. [2] 尹逊霄, 华珞, 张振贤, 滑丽萍, 高娟. 土壤中磷素的有效性及其循环转化机制研究. 首都师范大学学报(自然科学版), 2005, 26(3): 95-101. [3] Wang XR, Wang YX, Tian J, Lim BL, Yan XL, Liao H. Overexpressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiol , 2009, 151(1): 233-240. [4] Yan XL, Wu P, Ling HQ, Xu GH, Xu FS, Zhang QF. Plant nutriomics in China: an overview. Ann Bot , 2006, 98(3): 473-482. [5] 方陵生. 磷肥过度使用之警示. 世界科学, 2010, (11): 6, 5. [6] Behrendt H, Boekhold A. Phosphorus saturation in soils and ground waters. Land Degrad Dev , 1993, 4(4): 233-243. [7] Oelkers EH, Valsami-Jones E. Phosphate Mineral Reactivity and Global Sustainability. Elements , 2008, 4(2): 83-87. [8] Mihelcic JR, Fry LM, Shaw R. Global potential of phosphorus recovery from human urine and feces. Chemosphere , 2011, 84(6): 832-839. [9] 李喜焕, 常文锁, 张彩英. 中国大豆磷素营养及磷高效品种筛选最新进展. 大豆科学, 2011, 30(2): 322-327. [10] 任海红, 刘学义, 李贵全. 大豆耐低磷胁迫研究进展. 分子植物育种, 2008, 6(2): 316-322. [11] 丁洪, 李生秀, 郭庆元, 张学江, 徐巧珍. 酸性磷酸酶活性与大豆耐低磷能力的相关研究. 植物营养与肥料学报, 1997, 3(2): 123-128. [12] 徐青萍, 罗超云, 廖红, 严小龙, 年海. 大豆不同品种对磷胁迫反应的研究. 大豆科学, 2003, 22(2): 108-114. [13] Wang LD, Liao H, Yan XL, Zhuang BC, Dong YS. Genetic variability for root hair traits as related to phosphorus status in soybean. Plant Soil , 2004, 261(1-2): 77-84. [14] Li YD, Wang YJ, Tong YP, Gao JG, Zhang JS, Chen SY. QTL mapping of phosphorus deficiency tolerance in soybean ( Glycine max L. Merr.). Euphytica , 2005, 142(1-2): 137-142. [15] 耿雷跃, 崔士友, 张丹, 邢邯, 盖钧镒, 喻德跃. 大豆磷效率QTL定位及互作分析. 大豆科学, 2007, 26(4): 460-466. [16] 崔世友, 耿雷跃, 孟庆长, 喻德跃. 大豆苗期耐低磷性及其QTL定位. 作物学报, 2007, 33(3): 378-383. [17] Zhang D, Cheng H, Geng LY, Kan GZ, Cui SY, Meng QC, Gai JY, Yu DY. Detection of quantitative trait loci for phosphorus deficiency tolerance at soybean seedling stage. Euphytica , 2009, 167(3): 313-322. [18] Mengel K, Kirkby EA, Kosegarten H, Appel T. Principles of Plant Nutrition. International Potash. Institute, Berne, Switzerland: Kluwer Academic Publishers, 2001. [19] Zhang D, Liu C, Cheng H, Kan G, Cui S, Meng Q, Gai J, Yu D. Quantitative trait loci associated with soybean tolerance to low phosphorus stress based on flower and pod abscission. Plant Breeding , 2010, 129(3): 243-249. [20] Zhang D, Song H, Cheng H, Hao D, Wang H, Kan G, Jin H, Yu D. The Acid Phosphatase-Encoding Gene GmACP1 Contributes to Soybean Tolerance to Low-Phosphorus Stress. PLoS Genet , 2014, 10(1): e1004061. [21] Liang Q, Cheng XH, Mei MT, Yan XL, Liao H. QTL analysis of root traits as related to phosphorus efficiency in soybean. Ann Bot , 2010, 106(1): 223-234. [22] King KE, Lauter N, Lin SF, Scott MP, Shoemaker RC. Evaluation and QTL mapping of phosphorus concentration in soybean seed. Euphytica , 2013, 189(2): 261-269. [23] Song HN, Yin ZT, Chao MN, Ning LH, Zhang D, Yu DY. Functional properties and expression quantitative trait loci for phosphate transporter GmPT1 in soybean. Plant , Cell Environ , 2014, 37(2): 462-472. [24] Peters JL, Cnudde F, Gerats T. Forward genetics and map-based cloning approaches. Trends Plant Sci , 2003, 8(10): 484-491. [25] Gamuyao R, Chin J H, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S. The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature , 2012, 488(7412): 535-539. [26] 李子银, 陈受宜. 水稻抗病基因同源序列的克隆、 定位及其表达. 科学通报, 1999, 44(7): 727-733. [27] Li J, Hegeman CE, Hanlon RW, Lacy GH, Denbow DM, Grabau EA. Secretion of active recombinant phytase from soybean cell-suspension cultures. Plant Physiol , 1997, 114(3): 1103-1111. [28] Li GL, Yang SH, Li MG, Qiao YK, Wang JH. Functional analysis of an Aspergillus ficuum phytase gene in Saccharomyces cerevisiae and its root-specific, secretory expression in transgenic soybean plants. Biotechnol Lett , 2009, 31(8): 1297-1303. [29] Gillman JD, Pantalone VR, Bilyeu K. The low phytic acid phenotype in soybean line CX1834 is due to mutations in two homologs of the maize low phytic acid gene. Plant Genome , 2009, 2(2): 179-190. [30] Wu B, Li XH, Liu C, Wang YJ, Li WL, Chang WS, Zhang CY. Genetic transformation and function analysis of transcription factor GmPHR1 in soybean. Soybean Sci , 2013, 32(3): 302-305. [31] 王军卫, 侯立江, 李登, 程春明, 王瑞珍, 赵现伟, 赵朝森. 野生大豆紫色酸性磷酸酶 PAP1 基因的克隆及分析. 大豆科学, 2013, 32(5): 596-600. [32] Li XH, Wu B, Kong YB, Zhang CY. GmPTF1 , a novel transcription factor gene, is involved in conferring soybean tolerance to phosphate starvation. Genet Mol Res , 2014, 13(1): 926-937. [33] 钟磊, 乔亚科, 乔潇, 李桂兰, 王林红, 刘晨光. 转 GmPTF1 基因大豆在低磷胁迫下的表现. 核农学报, 2013, 27(7): 1041-1047. [34] Liang CY, Piñeros MA, Tian J, Yao ZF, Sun LL, Liu JP, Shaff J, Coluccio A, Kochian LV, Liao H. Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils. Plant Physiol , 2013, 161(3): 1347-1361. [35] Kong YB, Li XH, Ma J, Li WL, Yan GJ, Zhang CY. GmPAP4 , a novel purple acid phosphatase gene isolated from soybean ( Glycine max ), enhanced extracellular phytate utilization in Arabidopsis thaliana . Plant Cell Rep , 2014, 33(4): 655-667. [36] Shen H, Chen JH, Wang ZY, Yang CY, Sasaki T, Yamamoto Y, Matsumoto H, Yan XL. Root plasma membrane H + -ATPase is involved in the adaptation of soybean to phosphorus starvation. J Exp Bot , 2006, 57(6): 1353-1362. [37] Shen H, He LF, Sasaki T, Yamamoto Y, Zheng SJ, Ligaba A, Yan XL, Ahn SJ, Yamaguchi M, Sasakawa H. Citrate secretion coupled with the modulation of soybean root tip under aluminum stress. Up-regulation of transcription, translation, and threonine-oriented phosphorylation of plasma membrane H + -ATPase . Plant Physiol , 2005, 138(1): 287-296. [38] 郭丽. 大豆苗期磷代谢生理参数和大豆新型植酸酶基因 ( Sphyl )克隆[学位论文]. 保定: 河北农业大学, 2008. [39] 郭丽, 赵玉新, 张树华, 张海娜, 肖凯. 超表达大豆植酸酶 Sphy1 基因对转基因烟草植株利用有机态磷能力的影响. 中国科技论文在线, 2009. [40] Wu ZY, Zhao JM, Gao RF, Hu GJ, Gai JY, Xu GH, Xing H. Molecular cloning, characterization and expression analysis of two members of the Pht1 family of phosphate transporters in Glycine max . PloS One , 2011, 6(6): e19752. [41] Tamura Y, Kobae Y, Mizuno T, Hata S. Identification and expression analysis of arbuscular mycorrhiza-inducible phosphate transporter genes of soybean. Biosci , Biotech Bioch , 2011, 76(2): 309-313. [42] Li CC, Gui SH, Yang T, Walk T, Wang XR, Liao H. Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis. Ann Bot , 2012, 109(1): 275-285. [43] Qin L, Zhao J, Tian J, Chen LY, Sun ZA, Guo YX, Lu X, Gu M, Xu GH, Liao H. The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean. Plant Physiol , 2012, 159(4): 1634-1643. [44] Qin L, Guo YX, Chen LY, Liang RK, Gu M, Xu GH, Zhao J, Walk T, Liao H. Functional characterization of 14 pht1 family genes in yeast and their expressions in response to nutrient starvation in soybean. PloS One , 2012, 7(10): e47726. [45] Fan CM, Wang X, Hu RB, Wang YH, Xiao CW, Jiang Y, Zhang XM, Zheng CY, Fu YF. The pattern of Phosphate transporter 1 genes evolutionary divergence in Glycine max L. BMC Plant Biol , 2013, 13(1): 48. [46] Singh P, Punjabi M, Jolly M, Rai RD, Sachdev A. Characterization and expression of codon optimized soybean phytase gene in E. coli . Indian J Biochem Bio , 2013, 50(6): 537-547. [47] Yao ZF, Tian J, Liao H. Comparative characterization of GmSPX members reveals that GmSPX 3 is involved in phosphate homeostasis in soybean. Ann Bot , 2014, 114 (3): 477-488. [48] 王冬冬, 朱延明, 李勇, 李杰, 柏锡. 电子克隆技术及其在植物基因工程中的应用. 东北农业大学学报, 2006, 37(3): 403-408. [49] Guo WB, Zhao J, Li XX, Qin L, Yan XL, Liao H. A soybean β-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses. Plant J , 2011, 66(3): 541-552. [50] Zhou J, Xie JN, Liao H, Wang XR. Overexpression of β-expansin gene GmEXPB2 improves phosphorus efficiency in soybean. Physiol Plantarum , 2014, 150(2): 194-204. [51] Hegeman CE, Grabau EA. A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings. Plant Physiol , 2001, 126(4): 1598-1608. [52] Xu F, Liu Q, Chen LY, Kuang JB, Walk T, Wang JX, Liao H. Genome-wide identification of soybean microRNAs and their targets reveals their organ-specificity and responses to phosphate starvation. BMC Genomics , 2013, 14(1): 66. |