[1] Yuan LP. Hybrid rice breeding for super high yield. Hybrid Rice, 1997, 12(6): 1-6. 袁隆平. 杂交水稻超高产育种. 杂交水稻, 1997, 12(6): 1-6. [2] Xu ZJ, Chen WF, Zhou HF, Zhang BL, Yang SR. The physiological and ecological characteristics of erect panicle rice population and its utilization prospect. Chinese Science Bulletin , 1996, 41(12): 1122-1126. 徐正进, 陈温福, 周洪飞, 张龙步, 杨守仁. 直立穗型水稻群体生理生态特性及其利用前景. 科学通报, 1996, 41(12): 1122-1126. [3] Chen WF, Xu ZJ, Zhang LB. Physiological Basis Rice Breeding for Super High Yield. Shenyang: Liaoning Science and Technology Press, 1995. 陈温福, 徐正进, 张龙步. 水稻超高产育种生理基础. 沈阳: 辽宁科学技术出版社, 1995. [4] Huang XZ, Qian Q, Liu ZB, Sun HY, He SY, Luo D, Xia GM, Chu CC, Li JY, Fu XD. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet , 2009, 41(4): 494-497. [5] Zhu KM, Tang D, Yan CJ, Chi ZC, Yu HX, Chen JM, Liang JS, Gu MH, Cheng ZK. ERECT PANICLE2 encodes a novel protein that regulates panicle erectness in Indica Rice . Genetics , 2010, 184(2): 343-350. [6] Li F, Liu WB, Tang JY, Chen JF, Tong HN, Hu B, Li CL, Fang J, Chen MS, Chu CC. Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. Cell Res , 2010, 20(7): 838-849. [7] Abe Y, Mieda K, Ando T, Kono I, Yano M, Kitano H, Iwasaki Y. The SMALL AND ROUND SEED1 ( SRS1/DEP2 ) gene is involved in the regulation of seed size in rice. Genes Genet Syst , 2010, 85(5): 327-339. [8] Piao RH, Jiang WZ, Ham TH, Choi MS, Qiao YL, Chu SH, Park JH, Woo MO, Jin ZX, An G, Lee J, Koh HJ. Map-based cloning of the ERECT PANICLE 3 gene in rice. Theor Appl Genet , 2009, 119(8): 1497-1506. [9] Qiao YL, Piao RH, Shi JX, Lee SI, Jiang WZ, Kim BK, Lee J, Han LZ, Ma WB, Koh HJ. Fine mapping and candidate gene analysis of dense and erect panicle 3 , DEP3 , which confers high grain yield in rice ( Oryza sativa L.). Theor Appl Genet , 2011, 122(7): 1439-1449. [10] Chen J, Gao H, Zheng XM, Jin MN, Weng JF, Ma J, Ren YL, Zhou KN, Wang Q, Wang J, Wang JL, Zhang X, Cheng ZJ, Wu CY, Wang HY, Wan JM. An evolutionarily conserved gene, FUWA , plays a role in determining panicle architecture, grain shape and grain weight in rice. Plant J , 2015, 83(3): 427-438. [11] Duan PG, Rao YC, Zeng DL, Yang YL, Xu R, Zhang BL, Dong GJ, Qian Q, Li YH. SMALL GRAIN 1 , which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice. Plant J , 2014, 77(4): 547-557. [12] Yang YH, Zhu Z, Zhang YD, Zhao QY, Zhou LH, Wang CL. Relationship between anatomic structure of the stem and lodging resistance of rice. Guihaia , 2012, 32(6): 834-839. 杨艳华, 朱镇, 张亚东, 赵庆勇, 周丽慧, 王才林. 水稻茎秆解剖结构与抗倒伏能力关系的研究. 广西植物, 2012, 32(6): 834-839. [13] Xu ZJ, Chen WF, Han Y, Shao GJ, Zhang WZ, Ma DR. Classification of panicle type and its relationship with grain yield and quality of rice in liaoning province. Acta Agronomica Sinica , 2007, 33(9):1411-1418. 徐正进, 陈温福, 韩勇, 邵国军, 张文忠, 马殿荣. 辽宁水稻穗型分类及其与产量和品质的关系. 作物学报, 2007, 33(9): 1411-1418. [14] Zhou Y, Zhu JY, Li ZY, Yi CD, Liu J, Zhang HG, Tang SZ, Gu MH, Liang GH. Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics , 2009, 183(1): 315-324. [15] Sun HY, Qian Q, Wu K, Luo JJ, Wang SS, Zhang CW, Ma YF, Liu Q, Huang XZ, Yuan QB, Han RX, Zhao M, Dong GJ, Guo LB, Zhu XD, Gou ZH, Wang W, Wu YJ, Lin HX, Fu XD. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat Genet , 2014, 46(6): 652-656. [16] Ookawa T, Hobo T, Yano M, Murata K, Ando T, Miura H, Asano K, Ochiai Y, Ikeda M, Nishitani R, Ebitani T, Ozaki H, Angeles ER, Hirasawa T, Matsuoka M. New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat Commun , 2010, 1(8): 132. [17] Hirano K, Okuno A, Hobo T, Ordonio R, Shinozaki Y, Asano K, Kitano H, Matsuoka M. Utilization of stiff culm trait of rice smos1 mutant for increased lodging resistance. PLoS One |