遗传 ›› 2016, Vol. 38 ›› Issue (1): 40-51.doi: 10.16288/j.yczz.15-293
陈龙1, 张宝云1, 冯光德2, 向伟1, 马云霞1, 陈航1, 储明星3, 王凭青1
收稿日期:
2015-06-24
修回日期:
2015-09-05
出版日期:
2016-01-20
发布日期:
2016-01-20
通讯作者:
王凭青,博士,硕士生导师,研究方向:分子生物学与基因工程。Tel: 023-65112753;E-mail: wang_pq@21cn.com
E-mail:chenlong19910522@163.com
作者简介:
陈龙,硕士,专业方向:分子遗传学。
基金资助:
Long Chen1, Baoyun Zhang1, Guangde Feng2, Wei Xiang1, Yunxia Ma1, Hang Chen1, Mingxing Chu3, Pingqing Wang1
Received:
2015-06-24
Revised:
2015-09-05
Online:
2016-01-20
Published:
2016-01-20
Supported by:
摘要: MicroRNA(miRNA)作为重要的后转录调节因子参与多种生理活动。孕酮(Progesterone,P4)是重要的甾类激素,通过结合特异性受体——孕酮受体(Progesterone receptors , PGR)发挥生理作用。PGR作为核受体超家族的一员参与调控生殖相关组织或非生殖相关组织的功能。P4/PGR和miRNA可单独在雌性生殖中发挥调控作用。然而,在雌性生殖过程中,miRNA和P4/PGR的相互作用对调控排卵等雌性生殖活动起到非常重要的作用,但作用机制还未阐明。本文综述了miRNA调节P4产生、PGR基因表达以及P4/PGR调节miRNA表达的可能作用方式,为更好地研究miRNA和P4/PGR在雌性生殖中的作用提供理论基础。
陈龙, 张宝云, 冯光德, 向伟, 马云霞, 陈航, 储明星, 王凭青. miRNA介导PGR信号通路在雌性生殖功能调节中的作用机制[J]. 遗传, 2016, 38(1): 40-51.
Long Chen, Baoyun Zhang, Guangde Feng, Wei Xiang, Yunxia Ma, Hang Chen, Mingxing Chu, Pingqing Wang. The mechanism of miRNA-mediated PGR signaling pathway in regulating female reproduction[J]. HEREDITAS(Beijing), 2016, 38(1): 40-51.
[1] Zhang BY, Di R, Chu MX, Wang PQ, Lu L. Advances on progesterone receptor gene. Hereditas(Beijing) , 2008, 30(12): 1536-1544. 张宝云, 狄冉, 储明星, 王凭青, 鲁浪. 孕酮受体基因的研究进展. 遗传, 2008, 30(12): 1536-1544. [2] Kang YH, Zhang BY, Wang PQ, Chu MX, Lai P, Cai BJ, Song WJ. Progesterone receptor-mediated molecular mechanisms on mam-malian female reproduction. Hereditas(Beijing) , 2012, 34(10): 1223-1232. 康岳华, 张宝云, 王凭青, 储明星, 赖平, 蔡冰杰, 宋文静. 孕酮受体介导哺乳动物雌性生殖活动的分子机理. 遗传, 2012, 34(10): 1223-1232. [3] Rekawiecki R, Kowalik MK, Kotwica J. Nuclear progesterone receptor isoforms and their functions in the female reproductive tract. Pol J Vet Sci , 2011, 14(1): 149-158. [4] Price TM, Dai QS. The role of a mitochondrial progesterone receptor (PR-M) in progesterone action. Semin Reprod Med , 2015, 33(3): 185-194. [5] Pru JK, Clark NC. PGRMC1 and PGRMC2 in uterine physiology and disease. Front Neurosci , 2013, 7: 168. [6] Taylor AH, McParland PC, Taylor DJ, Bell SC. The cytoplasmic 60 kDa progesterone receptor isoform predominates in the human amniochorion and placenta at term. Reprod Biol Endocrinol , 2009, 7: 22. [7] Song XD, Cao GH, Jing LL, Lin SC, Wang XZ, Zhang JJ, Wang MR, Liu WL, Lv CJ. Analysing the relationship between lncRNA and protein-coding gene and the role of lncRNA as ceRNA in pulmonary fibrosis. J Cell Mol Med , 2014, 18(6): 991-1003. [8] Renthal NE, Chen CC, Williams KC, Gerard RD, Prange-Kiel J, Mendelson CR. miR-200 family and targets, ZEB1 and ZEB2, modulate uterine quiescence and contractility during pregnancy and labor. Proc Natl Acad Sci USA , 2010, 107(48): 20828-20833. [9] Hu SJ, Ren G, Liu JL, Zhao ZA, Yu YS, Su RW, Ma XH, Ni H, Lei W, Yang ZM. MicroRNA expression and regulation in mouse uterus during embryo implantation. J Biol Chem , 2008, 283(34): 23473-23484. [10] Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery CA Jr, Shyamala G, Conneely OM, O'Malley BW. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev , 1995, 9(18): 2266-2278. [11] Gonzalez G, Behringer RR. Dicer is required for female reproductive tract development and fertility in the mouse. Mol Reprod Dev , 2009, 76(7): 678-688. [12] Hovey AM, Devor EJ, Breheny PJ, Mott SL, Dai DH, Thiel KW, Leslie KK. miR-888: a novel cancer-testis antigen that targets the progesterone receptor in endometrial cancer. Transl Oncol , 2015, 8(2): 85-96. [13] Williams KC, Renthal NE, Gerard RD, Mendelson CR. The microRNA (miR)-199a/214 cluster mediates opposing effects of progesterone and estrogen on uterine contractility during pregnancy and labor. Mol Endocrinol , 2012, 26(11): 1857-1867. [14] Finlay-Schultz J, Cittelly DM, Hendricks P, Patel P, Kabos P, Jacobsen BM, Richer JK, Sartorius CA. Progesterone downregulation of miR-141 contributes to expansion of stem-like breast cancer cells through maintenance of progesterone receptor and Stat5a. Oncogene , 2014, 34(28): 3676-3687. [15] Mulac-Jericevic B, Mullinax RA, DeMayo FJ, Lydon JP, Conneely OM. Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform. Science , 2000, 289(5485): 1751-1754. [16] Robker RL, Akison LK, Russell DL. Control of oocyte release by progesterone receptor-regulated gene expression. Nucl Recept Signal , 2009, 7: e012. [17] Sahlin L, Masironi B, Åkerberg S, Eriksson H. Tissue-and hormone-dependent progesterone receptor distribution in the rat uterus. Reprod Biol Endocrinol , 2006, 4: 47. [18] Conneely OM, Mulac-Jericevic B, Lydon JP, de Mayo FJ. Reproductive functions of the progesterone receptor isoforms: lessons from knock-out mice. Mol Cell Endocrinol , 2001, 179(1-2): 97-103. [19] Conneely OM, Mulac-Jericevic B, Lydon JP. Progesterone-dependent regulation of female reproductive activity by two distinct progesterone receptor isoforms. Steroids , 2003, 68(10-13): 771-778. [20] Large MJ, DeMayo FJ. The regulation of embryo implantation and endometrial decidualization by progesterone receptor signaling. Mol Cell Endocrinol , 2012, 358(2): 155-165. [21] Mesiano S. Myometrial progesterone responsiveness. Semin Reprod Med , 2007, 25(1): 5-13. [22] Li R, Qiao J, Wang LN, Li L, Zhen XM, Liu P, Zheng XY. MicroRNA array and microarray evaluation of endometrial receptivity in patients with high serum progesterone levels on the day of hCG administration. Reprod Biol Endocrinol , 2011, 9: 29. [23] Li R, Qiao J, Wang L, Zhen X, Lu Y. Serum progesterone concentration on day of HCG administration and IVF outcome. Reprod Biomed Online , 2008, 16(5): 627-631. [24] Gellersen B, Fernandes MS, Brosens JJ. Non-genomic progesterone actions in female reproduction. Hum Reprod Update , 2009, 15(1): 119-138. [25] Leonhardt SA, Boonyaratanakornkit V, Edwards DP. Progesterone receptor transcription and non-transcription signaling mechanisms. Steroids , 2003, 68(10-13): 761-770. [26] Yoon S, Seger R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors , 2006, 24(1): 21-44. [27] Stocco C, Telleria C, Gibori G. The molecular control of corpus luteum formation, function, and regression. Endocr Rev , 2007, 28(1): 117-149. [28] Papadopoulos V, Aghazadeh Y, Fan JJ, Campioli E, Zirkin B, Midzak A. Translocator protein-mediated pharmacology of cholesterol transport and steroidogenesis. Mol Cell Endocrinol , 2015, 408: 90-98. [29] Papadopoulos V, Miller WL. Role of mitochondria in steroidogenesis. Best Pract Res Clin Endocrinol Metab , 2012, 26(6): 771-790. [30] Ahn SW, Nedumaran B, Xie YB, Kim DK, Kim YD, Choi HS. Bisphenol A bis (2, 3-dihydroxypropyl) ether (BADGE. 2H 2 O) induces orphan nuclear receptor Nur77 gene expression and increases steroidogenesis in mouse testicular Leydig cells. Mol Cells , 2008, 26(1): 74-80. [31] Oki KJ, Gomez-Sanchez EP, Gomez-Sanchez CE. Drosha-dependent miRNA regulate aldosterone synthesis by increasing StAR and HSD3B2 expression. Faseb J , 2012, 26, doi:10.1096/fj.1530-6860. [32] Otsuka M, Zheng M, Hayashi M, Lee JD, Yoshino O, Lin SC, Han JH. Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. J Clin Invest , 2008, 118(5): 1944-1954. [33] Sirotkin AV, Ovcharenko D, Grossmann R, Lauková M, Mlynček M. Identification of microRNAs controlling human ovarian cell steroidogenesis via a genome-scale screen. J Cell Physiol , 2009, 219(2): 415-420. [34] Menon B, Sinden J, Franzo-Romain M, Botta RB, Menon KMJ. Regulation of LH receptor mRNA binding protein by miR-122 in rat ovaries. Endocrinology , 2013, 154(12): 4826-4834. [35] Kitahara Y, Nakamura K, Kogure K, Minegishi T. Role of microRNA-136-3p on the expression of luteinizing hormone-human chorionic gonadotropin receptor mRNA in rat ovaries. Biol Reprod , 2013, 89(5): 114. [36] Amsterdam A, Selvaraj N. Control of differentiation, transformation, and apoptosis in granulosa cells by oncogenes, oncoviruses, and tumor suppressor genes. Endocr Rev , 1997, 18(4): 435-461. [37] Amsterdam A, Rotmensch S, Ben-Ze'ev A. Coordinated regulation of morphological and biochemical differentiation in a steroidogenic cell: the granulosa cell model. Trends Biochem Sci , 1989, 14(9): 377-382. [38] Amsterdam A, Gold RS, Hosokawa K, Yoshida Y, Sasson R, Jung Y, Kotsuji F. Crosstalk among multiple signaling pathways controlling ovarian cell death. Trends Endocrinol Metab , 1999, 10(7): 255-262. [39] Robker RL, Russell DL, Yoshioka S, Sharma SC, Lydon JP, O'Malley BW, Espey LL, Richards JS. Ovulation: a multi- gene, multi-step process. Steroids , 2000, 65(10-11): 559-570. [40] Grieshaber NA, Ko C, Grieshaber SS, Ji I, Ji TH. Follicle-stimulating hormone-responsive cytoskeletal genes in rat granulosa cells: class I β-tubulin, tropomyosin-4, and kinesin heavy chain. Endocrinology , 2003, 144(1): 29-39. [41] Sasson R, Dantes A, Tajima K, Amsterdam A. Novel genes modulated by FSH in normal and immortalized FSH-responsive cells: new insights into the mechanism of FSH action. Faseb J , 2003, 17(10): 1256-1266. [42] Tanaka M, Hennebold JD, Miyakoshi K, Teranishi T, Ueno K, Adashi EY. The generation and characterization of an ovary-selective cDNA library. Mol Cell Endocrinol , 2003, 202(1-2): 67-69. [43] Shimasaki S, Zachow RJ, Li DM, Kim H, Iemura SI, Ueno N, Sampath K, Chang RJ, Erickson GF. A functional bone morphogenetic protein system in the ovary. Proc Natl Acad Sci USA , 1999, 96(13): 7282-7287. [44] Yao N, Lu CL, Zhao JJ, Xia HF, Sun DG, Shi XQ, Wang C, Li D, Cui Y, Ma X. A network of miRNAs expressed in the ovary are regulated by FSH. Front Biosci (Landmark Ed) , 2009, 14: 3239-3245. [45] Sites CK, Kessel B, LaBarbera AR. Adhesion proteins increase cellular attachment, follicle-stimulating hormone receptors, and progesterone production in cultured porcine granulosa cells. Proc Soc Exp Biol Med , 1996, 212(1): 78-83. [46] Köhler C, Villar CBR. Programming of gene expression by Polycomb group proteins. Trends Cell Biol , 2008, 18(5): 236-243. [47] Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, Bell GW, Otte AP, Vidal M, Gifford DK, Young RA, Jaenisch R. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature , 2006, 441(7091): 349-353. [48] Williams KC, Renthal NE, Condon JC, Gerard RD, Mendelson CR. MicroRNA-200a serves a key role in the decline of progesterone receptor function leading to term and preterm labor. Proc Natl Acad Sci USA , 2012, 109(19): 7529-7534. [49] Cui W, Li QZ, Feng L, Ding W. MiR-126-3p regulates progesterone receptors and involves development and lactation of mouse mammary gland. Mol Cell Biochem , 2011, 355(1-2): 17-25. [50] Younger ST, Corey DR. Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters. Nucleic Acids Res , 2011, 39(13): 5682-5691. [51] Maillot G, Lacroix-Triki M, Pierredon S, Gratadou L, Schmidt S, Bénès V, Roché H, Dalenc F, Auboeuf D, Millevoi S, Vagner S. Widespread estrogen-dependent repression of micrornas involved in breast tumor cell growth. Cancer Res , 2009, 69(21): 8332-8340. [52] Liu JL, Liang XH, Su RW, Lei W, Jia B, Feng XH, Li ZX, Yang ZM. Combined analysis of microRNome and 3'-UTRome reveals a species-specific regulation of progesterone receptor expression in the endometrium of rhesus monkey. J Biol Chem , 2012, 287(17): 13899-13910. [53] Uva P, da Sacco L, del Cornò M, Baldassarre A, Sestili P, Orsini M, Palma A, Gessani S, Masotti A. Rat mir-155 generated from the lncRNA Bic is 'hidden' in the alternate genomic assembly and reveals the existence of novel mammalian miRNAs and clusters. RNA , 2013, 19(3): 365-379. [54] He YP, Vogelstein B, Velculescu VE, Papadopoulos N, Kinzler KW. The antisense transcriptomes of human cells. Science , 2008, 322(5909): 1855-1857. [55] Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermüller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumais E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, Tammana H, Gingeras TR. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science , 2007, 316(5830): 1484-1488. [56] Cochrane DR, Jacobsen BM, Connaghan KD, Howe EN, Bain DL, Richer JK. Progestin regulated miRNAs that mediate progesterone receptor action in breast cancer. Mol Cell Endocrinol , 2012, 355(1): 15-24. [57] Castellano L, Giamas G, Jacob J, Coombes RC, Lucchesi W, Thiruchelvam P, Barton G, Jiao LR, Wait R, Waxman J, Hannon GJ, Stebbing J. The estrogen receptor-α-induced microRNA signature regulates itself and its transcriptional response. Proc Natl Acad Sci USA , 2009, 106(37): 15732- 15737. [58] Cochrane DR, Cittelly DM, Howe EN, Spoelstra NS, McKinsey EL, LaPara K, Elias A, Yee D, Richer JK. MicroRNAs link estrogen receptor alpha status and Dicer levels in breast cancer. Horm Cancer , 2010, 1(6): 306-319. [59] Lowery AJ, Miller N, Devaney A, McNeill RE, Davoren PA, Lemetre C, Benes V, Schmidt S, Blake J, Ball G, Kerin MJ. MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Res , 2009, 11(3): R27. [60] Sempere LF, Christensen M, Silahtaroglu A, Bak M, Heath CV, Schwartz G, Wells W, Kauppinen S, Cole CN. Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res , 2007, 67(24): 11612-11620. [61] Yin MM. Study on the role of miRNA-383 and miRNA-320 in mouse follicular development [Dissertation]. Hefei: University of Science and Technology of China, 2013. 阴棉棉. 小鼠卵泡发育过程中MiRNA-383和MiRNA-320的功能研究[学位论文]. 合肥: 中国科学技术大学, 2013. [62] Peiró R, Herrler A, Santacreu MA, Merchán M, Argente MJ, García ML, Folch JM, Blasco A. Expression of progesterone receptor related to the polymorphism in the PGR gene in the rabbit reproductive tract. J Anim Sci , 2009, 88(2): 421-427. [63] Chin LJ, Ratner E, Leng SG, Zhai RH, Nallur S, Babar I, Muller RU, Straka E, Su L, Burki EA, Crowell RE, Patel R, Kulkarni T, Homer R, Zelterman D, Kidd KK, Zhu Y, Christiani DC, Belinsky SA, Slack FJ, Weidhaas JB. A SNP in a let-7 microRNA complementary site in the KRAS 3' untranslated region increases non-small cell lung cancer risk. Cancer Res , 2008, 68(20): 8535-8540. [64] Nicoloso MS, Sun H, Spizzo R, Kim H, Wickramasinghe P, Shimizu M, Wojcik SE, Ferdin J, Kunej T, Xiao LC, Manoukian S, Secreto G, Ravagnani F, Wang XM, Radice P, Croce CM, Davuluri RV, Calin GA. Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res , 2010, 70(7): 2789-2798. [65] Zheng H, Song FJ, Zhang LN, Yang D, Ji P, Wang YM, Almeida M, Calin GA, Hao XS, Wei QY, Zhang W, Chen KX. Genetic variants at the miR-124 binding site on the cytoskeleton-organizing IQGAP1 gene confer differential predisposition to breast cancer. Int J Oncol , 2011, 38(4): 1153-1161. [66] Yuan DZ, Yu LL, Qu T, Zhang SM, Zhao YB, Pan JL, Xu Q, He YP, Zhang JH, Yue LM. Identification and characterization of progesterone- and estrogen-regulated MicroRNAs in mouse endometrial epithelial cells. Reprod Sci , 2015, 22(2): 223-234. [67] Hardy DB, Janowski BA, Corey DR, Mendelson CR. Progesterone receptor plays a major antiinflammatory role in human myometrial cells by antagonism of nuclear factor-κB activation of cyclooxygenase 2 expression. Mol Endocrinol , 2006, 20(11): 2724-2733. [68] Olson DM. The role of prostaglandins in the initiation of parturition. Best Pract Res Clin Obstet Gynaecol , 2003, 17(5): 717-730. [69] Xie YL, Yang YJ, Tang C, Sheng HJ, Jiang Y, Han K, Ding LJ. Estrogen combined with progesterone decreases cell proliferation and inhibits the expression of Bcl-2 via microRNA let-7a and miR-34b in ovarian cancer cells. Clin Transl Oncol , 2014, 16(10): 898-905. [70] Nothnick WB, Healy C, Hong XM. Steroidal regulation of uterine miRNAs is associated with modulation of the miRNA biogenesis components Exportin-5 and Dicer1. Endocrine , 2010, 37(2): 265-273. [71] Aghajanova L, Giudice LC. Molecular evidence for differences in endometrium in severe versus mild endometriosis. Reprod Sci , 2011, 18(3): 229-251. [72] Faggad A, Budczies J, Tchernitsa O, Darb-Esfahani S, Sehouli J, Muller BM, Wirtz R, Chekerov R, Weichert W, Sinn B, Mucha C, Elwali NE, Schafer R, Dietel M, Denkert C. Prognostic significance of Dicer expression in ovarian cancer-link to global microRNA changes and oestrogen receptor expression. J Pathol , 2010, 220(3): 382-391. [73] Pan Q, Luo XP, Toloubeydokhti T, Chegini N. The expression profile of micro-RNA in endometrium and endometriosis and the influence of ovarian steroids on their expression. Mol Hum Reprod , 2007, 13(11): 797-806. [74] Toloubeydokhti T, Pan Q, Luo XP, Bukulmez O, Chegini N. The expression and ovarian steroid regulation of endometrial micro-RNAs. Reprod Sci , 2008, 15(10): 993-1001. [75] Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE, Finch CE, Laurent III GS, Kenny PJ, Wahlestedt C. Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of β-secretase. Nat Med , 2008, 14(7): 723-730. [76] Wang K, Liu F, Zhou LY, Long B, Yuan SM, Wang Y, Liu CY, Sun T, Zhang XJ, Li PF. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res , 2014, 114(9): 1377-1388. [77] Gabory A, Jammes H, Dandolo L. The H19 locus: role of an imprinted non-coding RNA in growth and development. Bioessays , 2010, 32(6): 473-480. [78] Lattuada D, Somigliana E, Viganò P, Candiani M, Pardi G, di Blasio AM. Genetics of endometriosis: a role for the progesterone receptor gene polymorphism PROGINS? Clin Endocrinol , 2004, 61(2): 190-194. [79] Brisken C, Heineman A, Chavarria T, Elenbaas B, Tan J, Dey SK, McMahon JA, McMahon AP, Weinberg RA. Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev , 2000, 14(6): 650-654. |
[1] | 饶琳, 孟飞龙, 房冉, 蔡晨依, 赵小立. MicroRNA调控耳蜗毛细胞发育的分子机制[J]. 遗传, 2019, 41(11): 994-1008. |
[2] | 夏蒙蒙,申雪沂,牛长敏,夏静,孙红亚,郑英. MicroRNA参与调控睾丸支持细胞的增殖与粘附功能[J]. 遗传, 2018, 40(9): 724-732. |
[3] | 刘海龙, 谌阳, 高杨, 周玲, 韩晓松, 赵长志, 杨高娟, 陈毅龙, 杨慧, 谢胜松. 靶向miRNA前体不同类型sgRNA的丰度及特异性评估[J]. 遗传, 2018, 40(7): 561-571. |
[4] | 肖娟, 王讯, 罗毅, 李晓开, 李学伟. 附睾小体功能蛋白及sRNA研究进展[J]. 遗传, 2018, 40(3): 197-206. |
[5] | 李新云, 付亮亮, 程会军, 赵书红. MicroRNA调控哺乳动物骨骼肌发育[J]. 遗传, 2017, 39(11): 1046-1053. |
[6] | 刘辰东, 杨露, 蒲红州, 杨琼, 黄文耀, 赵雪, 朱砺, 张顺华. 运动对骨骼肌基因表达的表观遗传调控作用[J]. 遗传, 2017, 39(10): 888-896. |
[7] | 魏俊,陆秀君,张晓林,梅梅,黄晓丽. MicroRNA在种子发育、休眠与萌发过程中的作用[J]. 遗传, 2017, 39(1): 14-21. |
[8] | 张轲, 冯光德, 张宝云, 向伟, 陈龙, 杨芳, 储明星, 王凭青. 表观遗传标记在猪分子育种中的研究与应用前景[J]. 遗传, 2016, 38(7): 634-643. |
[9] | 符梅, 徐克惠, 许文明. Dicer调节生殖功能的研究进展[J]. 遗传, 2016, 38(7): 612-622. |
[10] | 周学, 杜宜兰, 金萍, 马飞. 癌症相关microRNA与靶基因的生物信息学分析[J]. 遗传, 2015, 37(9): 855-864. |
[11] | 王冬, 李永君, 丁楠, 王均云, 杨琼, 杨雅冉, 李艳明, 方向东, 赵华. miRNA调控恶性黑色素瘤细胞上皮-间充质转化的分子网络及机制[J]. 遗传, 2015, 37(7): 673-682. |
[12] | 孙凌云, 李星逾, 孙志为. 原发性肝癌的表观遗传学及其治疗[J]. 遗传, 2015, 37(6): 517-527. |
[13] | 龚淑敏, 丁艳菲, 朱诚. miRNA在植物种子发育过程中的作用[J]. 遗传, 2015, 37(6): 554-560. |
[14] | 李迎迎,刘志广,王丽,袁园园,刘平,王林嵩. 血清miRNAs作为食管鳞癌新的生物标志物[J]. 遗传, 2015, 37(4): 315-320. |
[15] | 刘欣, 张洁, 赵春晖, 李铁松, 王继红, 李庆伟. 日本七鳃鳗物种特异性microRNAs及其前体识别与验证[J]. 遗传, 2015, 37(3): 283-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: