[1] Pacheco I, Buzea C, Tron V. Towards new therapeutic approaches for malignant melanoma. Expert Rev Mol Med , 2011, 13: e33. [2] Lujambio A, Lowe SW. The microcosmos of cancer. Nature , 2012, 482(7385): 347-355. [3] Rigel DS, Russak J, Friedman R. The evolution of melanoma diagnosis: 25 years beyond the ABCDs. CA Cancer J Clin , 2010, 60(5): 301-316. [4] Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol , 2014, 15(3): 178-196. [5] Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial- mesenchymal transitions in development and disease. Cell , 2009, 139(5): 871-890. [6] Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell , 2008, 14(6): 818-829. [7] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 . Cell , 1993, 75(5): 843-854. [8] Mione M, Bosserhoff A. MicroRNAs in melanocyte and melanoma biology. Pigment Cell Melanoma Res , 2015, 28(3): 340-354. [9] Dar AA, Majid S, Rittsteuer C, De Semir D, Bezrookove V, Tong S, Nosrati M, Sagebiel R, Miller JR, III, Kashani- Sabet M. The role of miR-18b in MDM2-p53 pathway signaling and melanoma progression. J Natl Cancer Inst , 2013, 105(6): 433-442. [10] Poenitzsch Strong AM, Setaluri V, Spiegelman VS. MicroRNA-340 as a modulator of RAS-RAF-MAPK signaling in melanoma. Arch Biochem Biophys , 2014, 563: 118-124. [11] Aigner A. MicroRNAs (miRNAs) in cancer invasion and metastasis: therapeutic approaches based on metastasis- related miRNAs. J Mol Med , 2011, 89(5): 445-457. [12] Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet , 2014, 15(2): 121-132. [13] Schneeberger K. Using next-generation sequencing to isolate mutant genes from forward genetic screens . Nat Rev Genet , 2014, 15(10): 662-676. [14] Sarda S, Hannenhalli S. Next-generation sequencing and epigenomics research: a hammer in search of nails. Genomics Inform , 2014, 12(1): 2-11. [15] Danielsson K, Mun LJ, Lordemann A, Mao J, Lin CHJ. Next-generation sequencing applied to rare diseases genomics. Expert Rev Mol Diagn , 2014, 14(4): 469-487. [16] Zhao H, Li YJ, Wang SB, Yang YD, Wang JY, Ruan XY, Yang YR, Cai K, Zhang B, Cui P, Yan JW, Zhao YL, Wakeland EK, Li QZ, Hu SN, Fang XD. Whole transcriptome RNA-seq analysis: tumorigenesis and metastasis of melanoma. Gene , 2014, 548(2): 234-243. [17] The Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature , 2014, 511(7511): 543-550. [18] The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature , 2014, 513(7517): 202-209. [19] Ouyang M, Li YX, Ye S, Ma JY, Lu LM, Lv WM, Chang GQ, Li XX, Li Q, Wang SM, Wang WJ. MicroRNA profiling implies new markers of chemoresistance of triple-negative breast cancer. PLoS One , 2014, 9(5): e96228. [20] Mitra R, Edmonds MD, Sun JC, Zhao M, Yu H, Eischen CM, Zhao ZM. Reproducible combinatorial regulatory networks elucidate novel oncogenic microRNAs in non- small cell lung cancer. RNA , 2014, 20(9): 1356-1368. [21] Ben-Hamo R, Efroni S. MicroRNA-gene association as a prognostic biomarker in cancer exposes disease mechanisms. PLoS Comput Biol , 2013, 9(11): e1003351. [22] Elgaaen BV, Olstad OK, Haug KBF, Brusletto B, Sandvik L, Staff AC, Gautvik KM, Davidson B. Global miRNA expression analysis of serous and clear cell ovarian carcinomas identifies differentially expressed miRNAs including miR-200c-3p as a prognostic marker. BMC Cancer , 2014, 14: 80. [23] Hanahan D, Weinberg RA. The hallmarks of cancer. Cell , 2000, 100(1): 57-70. [24] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell , 2011, 144(5): 646-674. [25] Sekulic A, Haluska P, Jr., Miller AJ, Genebriera De Lamo J, Ejadi S, Pulido JS, Salomao DR, Thorland EC, Vile RG, Swanson DL, Pockaj BA, Laman SD, Pittelkow MR, Markovic SN. Malignant melanoma in the 21st century: the emerging molecular landscape. Mayo Clin Proc , 2008, 83(7): 825-846. [26] Pawlikowski JS, Mcbryan T, Van Tuyn J, Drotar ME, Hewitt RN, Maier AB, King A, Blyth K, Wu H, Adams PD. Wnt signaling potentiates nevogenesis. Proc Natl Acad Sci USA , 2013, 110(40): 16009-16014. [27] Ni CS, Sun BC, Dong XY, Sun T, Zhao N, Liu YR, Gu Q. Promoting melanoma growth and metastasis by enhancing VEGF expression. Contemp Oncol (Pozn) , 2012, 16(6):526-531. [28] Hodgson L, Henderson AJ, Dong C. Melanoma cell migration to type IV collagen requires activation of NF-κB. Oncogene , 2003, 22(1): 98-108. [29] Muthusamy V, Piva TJ. The UV response of the skin: a review of the MAPK, NFκB and TNFα signal transduction pathways. Arch Dermatol Res , 2010, 302(1): 5-17. [30] Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell , 2012, 149(6): 1192-1205. [31] Li VSW, Ng SS, Boersema PJ, Low TY, Karthaus WR, Gerlach JP, Mohammed S, Heck AJR, Maurice MM, Mahmoudi T, Clevers H. Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell , 2012, 149(6): 1245-1256. [32] Lassen A, Atefi M, Robert L, Wong DJ, Cerniglia M, Comin-Anduix B, Ribas A. Effects of AKT inhibitor therapy in response and resistance to BRAF inhibition in melanoma. Mol Cancer , 2014, 13: 83. [33] Box NF, Terzian T. The role of p53 in pigmentation, tanning and melanoma. Pigment Cell Melanoma Res , 2008, 21(5): 525-533. [34] Lee B, Sandhu S, Mcarthur G. Cell cycle control as a promising target in melanoma. Curr Opin Oncol , 2015, 27(2): 141-150. [35] Uzdensky AB, Demyanenko SV, Bibov MY. Signal transduction in human cutaneous melanoma and target drugs. Curr Cancer Drug Targets , 2013, 13(8): 843-866. (责任编委: 宋旭) |