遗传 ›› 2013, Vol. 35 ›› Issue (11): 1253-1264.doi: 10.3724/SP.J.1005.2013.01253
秦丹1,2, 徐存拴1,2
收稿日期:
2013-06-07
修回日期:
2013-07-31
出版日期:
2013-11-20
发布日期:
2013-10-23
通讯作者:
徐存拴, 博士, 教授, 研究方向:细胞分化调控。
E-mail:xucs@x263.net
作者简介:
秦丹, 硕士研究生, 专业方向:细胞分化调控。Tel: 18336063263; E-mail: qindan2008@126.com
基金资助:
国家重点基础研究发展计划项目(973计划)(编号:2012CB722304)和河南省基础与前沿技术研究计划项目(编号:102300413213)资助
Received:
2013-06-07
Revised:
2013-07-31
Online:
2013-11-20
Published:
2013-10-23
摘要:
非编码DNA序列是指基因组中不编码蛋白质的DNA序列。这些序列可以结合调节因子、转录为功能性RNA、单独或协同地调节生理活动和病理过程。文章围绕基因表达调控作用, 总结了近几年非编码DNA序列的研究成果, 对其结构、功能和可能的作用机制进行了初步阐述, 介绍了目前鉴定非编码DNA序列中功能元件的计算方法和实验技术, 并对非编码DNA未来的研究进行了展望。
秦丹 徐存拴. 非编码DNA序列的功能及其鉴定[J]. 遗传, 2013, 35(11): 1253-1264.
QIN Dan, XU Cun-Shuan. Characterization and identification of functional elements in non-coding DNA sequences[J]. HEREDITAS, 2013, 35(11): 1253-1264.
[1] Ponting CP, Belgard TG. Transcribed dark matter: meaning or myth? Hum Mol Gene, 2010, 19(R2): R162–R168.<\p> [2] ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature, 2012, 489(7414): 57–74.<\p> [3] Vickers KC, Palmisano BT, Remaley AT. Remaley. The role of noncoding "junk DNA" in cardiovascular disease. Clin Chem, 2010, 56(10): 1518–1520.<\p> [4] Xie C, Zhang YE, Chen JY, Liu CJ, Zhou WZ, Li Y, Zhang M, Zhang R, Wei L, Li CY. Hominoid-specific de novo protein-coding genes originating from long non-coding RNAs. PLoS Genet, 2012, 8(9): e1002942.<\p> [5] Alexander RP, Fang G, Rozowsky J, Snyder M, Gerstein MB. Annotating non-coding regions of the genome. Nat Rev Genet, 2010, 11(8): 559–571.<\p> [6] Lander ES. Initial sequencing and analysis of the human genome. Nature, 2001, 409(6822): 860–921.<\p> [7] Gangwal K, Lessnick SL. Microsatellites are EWS/FLI response elements: genomic "junk" is EWS/FLI's treasure. Cell Cycle, 2008, 7(20): 3127–3132.<\p> [8] Faulkner GJ, Kimura Y, Daub CO, Wani S, Plessy C, Ir-vine KM, Schroder K, Cloonan N, Steptoe AL, Lassmann T, Waki K, Hornig N, Arakawa T, Takahashi H, Kawai J, Forrest AR, Suzuki H, Hayashizaki Y, Hume DA, Orlando V, Grimmond SM, Carninci P. The regulated retrotrans-poson transcriptome of mammalian cells. Nat Genet, 2009, 41(5): 563–571.<\p> [9] Zuckerkandl E, Cavalli G. Combinatorial epigenetics, "junk DNA", and the evolution of complex organisms. Gene, 2007, 390(1-2): 232–242.<\p> [10] Zheng DY, Frankish A, Baertsch R, Kapranov P, Reymond A, Choo SW, Lu YT, Denoeud F, Antonarakis SE, Snyder M, Ruan YJ, Wei CL, Gingeras TR, Guigó R, Harrow J, Gerstein MB. Pseudogenes in the ENCODE regions: con-sensus annotation, analysis of transcription, and evolution. Genome Res, 2007, 17(6): 839–851.<\p> [11] Tam OH, Aravin AA, Stein P, Girard A, Murchison EP, Cheloufi S, Hodges E, Anger M, Sachidanandam R, Schultz RM, Hannon GJ. Pseudogene-derived small inter-fering RNAs regulate gene expression in mouse oocytes. Nature, 2008, 453(7194): 534–538.<\p> [12] Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramo-chi-Miyagawa S, Obata Y, Chiba H, Kohara Y, Kono T, Nakano T, Surani MA, Sakaki Y, Sasaki H. Endogenous siRNAs from naturally formed dsRNAs regulate tran-scripts in mouse oocytes. Nature, 2008, 453(7194): 539– 543.<\p> [13] Cabianca DS, Casa V, Bodega B, Xynos A, Ginelli E, Ta-naka Y, Gabellini D. A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell, 2012, 149(4): 819–831.<\p> [14] Tsai MC, Spitale RC, Chang HY. Long intergenic non-coding RNAs: new links in cancer progression. Cancer Res, 2011, 71(1): 3–7.<\p> [15] Hemberg M, Gray JM, Cloonan N, Kuersten S, Grimmond S, Greenberg ME, Kreiman G. Integrated genome analysis suggests that most conserved non-coding sequences are regulatory factor binding sites. Nucleic Acids Res, 2012, 40(16): 7858–7869.<\p> [16] Mullapudi N, Joseph SJ, Kissinger JC. Identification and functional characterization of cis-regulatory elements in the apicomplexan parasite Toxoplasma gondii. Genome Biol, 2009, 10(4): R34.<\p> [17] Narlikar L, Ovcharenko I. Identifying regulatory elements in eukaryotic genomes. Brief Funct Genomic Proteomic, 2009, 8(4): 215–230.<\p> [18] Lee JT. Epigenetic regulation by long noncoding RNAs. Science, 2012, 338(6113): 1435–1439.<\p> [19] Ogbourne S, Antalis TM. Transcriptional control and the role of silencers in transcriptional regulation in eukaryotes. Biochem J, 1998, 331 (Pt 1): 1–14.<\p> [20] Noonan JP, McCallion AS. Genomics of long-range regu-latory elements. Annu Rev Genomics Hum Genet, 2010, 11(1): 1–23.<\p> [21] Noordermeer D, de Laat W. Joining the loops: β-globin gene regulation. IUBMB Life, 2008, 60(12): 824–833.<\p> [22] Hart CM, Laemmli UK. Facilitation of chromatin dynam-ics by SARs. Curr Opin Genet Dev, 1998, 8(5): 519–525.<\p> [23] Carninci P, Kasukawa T, Katayama S, Gough J, RIKEN Genome Exploration Research Group and Genome Sci-ence Group (Genome Network Project Core Group). The transcriptional landscape of the mammalian genome. Sci-ence, 2005, 309(5740) 1559–1563.<\p> [24] Moazed D. Small RNAs in transcriptional gene silencing and genome defence. Nature, 2009, 457(7228): 413–420.<\p> [25] Kim VN. Small RNAs just got bigger: Piwi-interacting RNAs (piRNAs) in mammalian testes. Genes Dev, 2006, 20(15): 1993–1997.<\p> [26] Atkinson SR, Marguerat S, Bähler J. Exploring long non-coding RNAs through sequencing. Semin Cell Dev Biol, 2012, 23(2): 200–205.<\p> [27] Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA in human carcinomas. Mol Cancer, 2011, 10(1): 1–17.<\p> [28] Bickel KS, Morris DR. Silencing the transcriptome's dark matter: mechanisms for suppressing translation of inter-genic transcripts. Mol Cell, 2006, 22(3): 309–316.<\p> [29] Wang KC, Yang YW, Liu B, Sanyal A, Corces- Zim-merman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA, Wysocka J, Lei M, Dekker J, Helms JA, Chang HY. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature, 2011, 472(7341): 120–124.<\p> [30] Loewer S, Cabili MN, Guttman M, Loh YH, Thomas K, Park IH, Garber M, Curran M, Onder T, Agarwal S, Manos PD, Datta S, Lander ES, Schlaeger TM, Daley GQ, Rinn JL. Large intergenic non-coding RNA-RoR modulates re-programming of human induced pluripotent stem cells. Nat Genet, 2010, 42(12): 1113–1117.<\p> [31] Gabory A, Jammes H, Dandolo L. The H19 locus: role of an imprinted non-coding RNA in growth and development. BioEssays, 2010, 32(6): 473–480.<\p> [32] Navarro P, Pichard S, Ciaudo C, Avner P, Rougeulle C. Tsix transcription across the Xist gene alters chromatin conformation without affecting Xist transcription: impli-cations for X-chromosome inactivation. Genes Dev, 2005, 19(12): 1474–1484.<\p> [33] Volpe TA, Kidner C, Hall IM, Teng G, Grewal SIS, Mar-tienssen RA. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science, 2002, 297(5588): 1833–1837.<\p> [34] Pal-Bhadra M, Leibovitch BA, Gandhi SG, Chikka MR, Bhadra U, Birchler JA, Elgin SCR. Heterochromatic si-lencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science, 2004, 303(5658): 669– 672.<\p> [35] Yan MD, Hong CC, Lai GM, Cheng AL, Lin YW, Chuang SE. Identification and characterization of a novel gene Saf transcribed from the opposite strand of Fas. Hum Mol Genet, 2005, 14(11): 1465–1474.<\p> [36] Mahmoudi S, Henriksson S, Corcoran M, Méndez-Vidal C, Wiman KG, Farnebo M. Wrap53, a natural p53 antisense transcript required for p53 induction upon DNA damage. Mol Cell, 2009, 33(4): 462–471.<\p> [37] Tufarelli C, Stanley JA, Garrick D, Sharpe JA, Ayyub H, Wood WG, Higgs DR. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet, 2003, 34(2): 157– 165.<\p> [38] Yu WQ, Gius D, Onyango P, Muldoon-Jacobs K, Karp J, Feinberg AP, Cui HM. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature, 2008, 451(7175): 202–206.<\p> [39] Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell, 2009, 136(4): 629–641.<\p> [40] Kouzarides T. Chromatin modifications and their function. Cell, 2007, 128(4): 693–705.<\p> [41] Rassoulzadegan M, Grandjean V, Gounon P, Vincent S, Gillot I, Cuzin F. RNA-mediated non-mendelian inheri-tance of an epigenetic change in the mouse. Nature, 2006, 441(7092): 469–474.<\p> [42] Kadonaga JT. Regulation of RNA polymerase II transcrip-tion by sequence-specific DNA binding factors. Cell, 2004, 116(2): 247–257.<\p> [43] Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter I, Chekmenev D, Krull M, Hor-nischer K, Voss N, Stegmaier P, Lewicki-Potapov B, Saxel H, Kel AE, Wingender E. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eu-karyotes. Nucleic Acids Res, 2006, 34(Database issue): D108–D110.<\p> [44] Sandelin A, Alkema W, Engström P, Wasserman WW, Lenhard B. JASPAR: an open access database for eu-karyotic transcription factor binding profiles. Nucleic Ac-ids Res, 2004, 32(Database issue): D91–D94.<\p> [45] Liu XS, Brutlag DL, Liu JS. An algorithm for finding protein-DNA binding sites with applications to chromatin- immunoprecipitation microarray experiments. Nat Bio-technol, 2002, 20(8): 835–839.<\p> [46] Thijs G, Lescot M, Marchal K, Rombauts S, De Moor B, Rouzé P, Moreau Y. A higher-order background model improves the detection of potential promoter regulatory elements by Gibbs sampling. Bioinformatics, 2001, 17(12): 1113–1122.<\p> [47] GuhaThakurta D. Computational identification of tran-scriptional regulatory elements in DNA sequence. Nucleic Acids Res, 2006, 34(12): 3585–3598.<\p> [48] Ureta-Vidal A, Ettwiller L, Birney E. Comparative ge-nomics: genome-wide analysis in metazoan eukaryotes. Nature Rev Genet, 2003, 4(4): 251–262.<\p> [49] Surkova S, Kosman D, Kozlov K, Manu, Myasnikova E, Samsonova AA, Spirov A, Vanario-Alonso CE, Sam-sonova M, Reinitz J. Characterization of the Drosophila segment determination morphome. Dev Biol, 2008, 313(2): 844–862.<\p> [50] GuhaThakurta D, Stormo GD. Identifying target sites for cooperatively binding factors. Bioinformatics, 2001, 17(7): 608–621.<\p> [51] Liu X, Brutlag DL, Liu JS. BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. Pac Symp Biocomput, 2001, 6: 127–138.<\p> [52] Zhou Q, Wong WH. CisModule: de novo discovery of cis-regulatory modules by hierarchical mixture modeling. Proc Natl Acad Sci USA, 2004, 101(33): 12114–12119.<\p> [53] Gupta M, Liu JS. De novo cis-regulatory module elicita-tion for eukaryotic genomes. Proc Natl Acad Sci USA, 2005, 102(20): 7079–7084.<\p> [54] Thompson W, Palumbo MJ, Wasserman WW, Liu JS, Lawrence CE. Decoding human regulatory circuits. Ge-nome Res, 2004, 14(10A): 1967–1974.<\p> [55] Eskin E, Pevzner PA. Finding composite regulatory pat-terns in DNA sequences. Bioinformatics, 2002, 18(Suppl. 1): S354–S363.<\p> [56] Marsan L, Sagot MF. Algorithms for extracting structured motifs using a suffix tree with an application to promoter and regulatory site consensus identification. J Comput Biol, 2000, 7(3-4): 345–362.<\p> [57] Blanchette M, Tompa M. Discovery of regulatory ele-ments by a computational method for phylogenetic foot-printing. Genome Res, 2002, 12(5): 739–748.<\p> [58] Newberg LA, Thompson WA, Conlan S, Smith TM, McCue LA, Lawrence CE. A phylogenetic Gibbs sampler that yields centroid solutions for cis-regulatory site pre-diction. Bioinformatics, 2007, 23(14): 1718–1727.<\p> [59] Duret L, Bucher P. Searching for regulatory elements in human noncoding sequences. Curr Opin Struct Biol, 1997, 7(3): 399–406.<\p> [60] Jenuwein T, Allis CD. Translating the histone code. Sci-ence, 2001, 293(5532): 1074–1080.<\p> [61] Heintzman ND, Stuart RK, Hon G, Fu YT, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu CX, Ching KA, Wang W, Weng ZP, Green RD, Crawford GE, Ren B. Distinct and predictive chromatin signatures of transcrip-tional promoters and enhancers in the human genome. Nat Genet, 2007, 39(3): 311–318.<\p> [62] Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R. Histone H3K27ac separates active from poised enhancers and pre-dicts developmental state. Proc Natl Acad Sci USA, 2010, 107(50): 21931–21936.<\p> [63] Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA. A chromatin landmark and transcription initiation at most promoters in human cells. Cell, 2007, 130(1): 77–88.<\p> [64] Wang HY, Zhou X. Detection and characterization of regulatory elements using probabilistic conditional ran-dom field and hidden Markov models. Chin J Cancer, 2013, 32(4): 186–194.<\p> [65] Bertone P, Stolc V, Royce TE, Rozowsky JS, Urban AE, Zhu XW, Rinn JL, Tongprasit W, Samanta M, Weissman S, Gerstein M, Snyder M. Global identification of human transcribed sequences with genome tiling arrays. Science, 2004, 306(5705): 2242–2246.<\p> [66] Kampa D, Cheng JL, Kapranov P, Yamanaka M, Brubaker S, Cawley S, Drenkow J, Piccolboni A, Bekiranov S, Helt G, Tammana H, Gingeras TR. Novel RNAs identified from an in-depth analysis of the transcriptome of human chro-mosomes 21 and 22. Genome Res, 2004, 14(3): 331–342.<\p> [67] Du J, Rozowsky JS, Korbel JO, Zhang ZD, Royce TE, Schultz MH, Snyder M, Gerstein M. A supervised hidden markov model framework for efficiently segmenting Til-ing Array data in transcriptional and CHIP-chip experi-ments: systematically incorporating validated biological knowledge. Bioinformatics, 2006, 22(24): 3016–3024.<\p> [68] Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolution-ary tool for transcriptomics. Nat Rev Genet, 2009, 10(1): 57–63.<\p> [69] Mercer TR, Gerhardt DJ, Dinger ME, Crawford J, Trapnell C, Jeddeloh JA, Mattick JS, Rinn JL. Targeted RNA se-quencing reveals the deep complexity of the human tran-scriptome. Nat Biotechnol, 2011, 30(1): 99–104.<\p> [70] Murigneux V, Saulière J, Roest Crollius H, Le Hir H. Transcriptome-wide identification of RNA binding sites by CLIP-seq. Methods, 2013, 63(1): 32–40.<\p> [71] Hafner M, Lianoglou S, Tuschl T, Betel D. Genome-wide identification of miRNA targets by PAR-CLIP. Methods, 2012, 58(2): 94–105.<\p> [72] Konig J, Zarnack K, Rot G, Curk T, Kayikci M, Zupan B, Turner DJ, Luscombe NM, Ule J. iCLIP-transcriptome- wide mapping of protein-RNA interactions with individual nucleotide resolution. J Vis Exp, 2011, 30(50): e2638.<\p> [73] 夏天, 肖丙秀, 郭俊明. 长链非编码RNA的作用机制及其研究方法. 遗传, 2013, 35(3): 269–280.<\p> [74] Chu C, Qu K, Zhong FL, Artandi SE, Chang HY. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell, 2011, 44(4): 667–678.<\p> [75] Chakraborty D, Kappei D, Theis M, Nitzsche A, Ding L, Paszkowski-Rogacz M, Surendranath V, Berger N, Schulz H, Saar K, Hubner N, Buchholz F. Combined RNAi and localization for functionally dissecting long noncoding RNAs. Nat Methods, 2012, 9(4): 360–362.<\p> [76] Carey MF, Peterson CL, Smale ST. DNase I footprinting. Cold Spring Harb Protoc, 2013, 2013(5): 469–478.<\p> [77] Cockerill PN. Structure and function of active chromatin and DNase I hypersensitive sites. FEBS J, 2011, 278(13): 2182–2210.<\p> [78] Hao H. Genome-wide occupancy analysis by ChIP-chip and ChIP-Seq. Adv Exp Med Biol, 2012, 723: 753–759.<\p> [79] Cawley S, Bekiranov S, Ng HH, Kapranov P, Sekinger EA, Kampa D, Piccolboni A, Sementchenko V, Cheng J, Wil-liams AJ, Wheeler R, Wong B, Drenkow J, Yamanaka M, Patel S, Brubaker S, Tammana H, Helt G, Struhl K, Gin-geras TR. Unbiased mapping of transcription factor bind-ing sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell, 2004, 116(4): 499–509.<\p> [80] Ethier SD, Miura H, Dostie J. Discovering genome regu-lation with 3C and 3C-related technologies. Biochim Bio-phys Acta, 2012, 1819(5): 401–410.<\p> [81] Zhang JY, Poh HM, Peh SQ, Sia YY, Li GL, Mulawadi FH, Goh Y, Fullwood MJ, Sung WK, Ruan XA, Ruan YJ. ChIA-PET analysis of transcriptional chromatin interac-tions. Methods, 2012, 58(3): 289–299.<\p> |
[1] | 张競文,续倩,李国亮. 癌症发生发展中的表观遗传学研究[J]. 遗传, 2019, 41(7): 567-581. |
[2] | 马志鹏, 陈军. 无义突变与“遗传补偿效应”[J]. 遗传, 2019, 41(5): 359-364. |
[3] | 宁椿游,何梦楠,唐茜子,朱庆,李明洲,李地艳. 基于Hi-C技术哺乳动物三维基因组研究进展[J]. 遗传, 2019, 41(3): 215-233. |
[4] | 张华伟, 孟星宇, 李连峰, 杨玉莹, 仇华吉. 长链非编码RNA——抗病毒天然免疫应答的新兴调控因子[J]. 遗传, 2018, 40(7): 525-533. |
[5] | 周瑞,王以鑫,龙科任,蒋岸岸,金龙. LncRNA调控骨骼肌发育的分子机制及其在家养动物中的研究进展[J]. 遗传, 2018, 40(4): 292-304. |
[6] | 李恩惠,赵欣,张策,刘威. 脆性X智力低下蛋白参与非编码RNA通路的研究进展[J]. 遗传, 2018, 40(2): 87-94. |
[7] | 叶仲杰,刘启鹏,岑山,李晓宇. LINE-1编码的逆转录酶在肿瘤形成过程中的作用[J]. 遗传, 2017, 39(5): 368-376. |
[8] | 施剑,李艳明,方向东. 长链非编码RNA通过细胞核高级结构调控真核基因表达及其临床意义[J]. 遗传, 2017, 39(3): 189-199. |
[9] | 岳敏, 杨禹, 郭改丽, 秦曦明. 哺乳动物生物钟的遗传和表观遗传研究进展[J]. 遗传, 2017, 39(12): 1122-1137. |
[10] | 路畅, 黄银花. 动物长链非编码RNA研究进展[J]. 遗传, 2017, 39(11): 1054-1065. |
[11] | 刘永明, 张玲, 邱涛, 赵卓凡, 曹墨菊. 高通量转录组测序技术在植物雄性不育研究中的应用[J]. 遗传, 2016, 38(8): 677-687. |
[12] | 李元丰, 韩玉波, 曹鹏博, 孟金凤, 李海北, 秦庚, 张锋, 靳光付, 杨勇, 邬玲仟, 平杰, 周钢桥. 2015年中国医学遗传学研究领域若干重要进展[J]. 遗传, 2016, 38(5): 363-390. |
[13] | 翟亚男, 许泉, 郭亚, 吴强. 原钙粘蛋白基因簇调控区域中成簇的CTCF结合位点分析[J]. 遗传, 2016, 38(4): 323-336. |
[14] | 张笑, 贾桂芳. RNA表观遗传修饰:N6-甲基腺嘌呤[J]. 遗传, 2016, 38(4): 275-288. |
[15] | 方科, 张凯翔, 王建, 付志猛, 赵湘辉. 表观遗传学新标记--5-羟甲基胞嘧啶检测方法的研究进展[J]. 遗传, 2016, 38(3): 206-216. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: