| [1] | Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini L, Zhang F . Multiplex genome engineering using CRISPR/Cas systems. Science, 2013,339(6121):819-823. | | [2] | Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA . RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol, 2013,31(3):233-239. | | [3] | Hsu PD, Lander ES, Zhang F . Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014,157(6):1262-1278. | | [4] | Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD . High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol, 2013,31(9):822-826. | | [5] | Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR . High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol, 2013,31(9):839-843. | | [6] | Wong N, Liu W, Wang X . WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol, 2015,16:218. | | [7] | Hinz JM, Laughery MF, Wyrick JJ . Nucleosomes inhibit Cas9 endonuclease activity in vitro. Biochemistry, 2015,54(48):7063-7066. | | [8] | Horlbeck MA, Gilbert LA, Villalta JE, Adamson B, Pak RA, Chen Y, Fields AP, Park CY, Corn JE, Kampmann M, Weissman JS . Compact and highly active next- generation libraries for CRISPR-mediated gene repression and activation. Elife, 2016,5:e19760. | | [9] | Lee CM, Davis TH, Bao G . Examination of CRISPR/ Cas9 design tools and the effect of target site accessibility on Cas9 activity. Exp Physiol, 2017,103(4):456-460. | | [10] | Isaac RS, Jiang FG, Doudna JA, Lim WA, Narlikar GJ, Almeida R . Nucleosome breathing and remodeling constrain CRISPR-Cas9 function. Elife, 2016,5:e13450. | | [11] | Kosicki M, Tomberg K, Bradley A . Repair of double- strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol, 2018,36(8):765-771. | | [12] | Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1989. | | [13] | Listgarten J, Weinstein M, Kleinstiver BP, Sousa AA, Joung JK, Crawford J, Gao K, Hoang L, Elibol M, Doench JG, Fusi N . Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs. Nat Biomed Eng, 2018,2(1):38-47. | | [14] | Kim HK, Min S, Song M, Jung S, Choi JW, Kim Y, Lee S, Yoon S, Kim HH . Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity. Nat Biotechnol, 2018,36(3):239-241. | | [15] | Lin Y, Cradick TJ, Brown MT, Deshmu |
| [1] |
梁卉, 王雪, 司敬方, 张毅. 利用基因组标记和机器学习算法对中国牛品种的分类准确性研究[J]. 遗传, 2024, 46(7): 530-539. |
| [2] |
马宝霞, 杨森, 吕明, 王昱人, 常立业, 韩艺帆, 王建刚, 郭杨, 徐坤. 不同CRISPR/Cas9供体适配基因编辑系统的比较及优化研究[J]. 遗传, 2024, 46(6): 466-477. |
| [3] |
鲍艳春, 戴伶俐, 刘在霞, 马凤英, 王宇, 刘永斌, 谷明娟, 娜日苏, 张文广. CRISPR/Cas9系统在畜禽遗传改良中研究进展[J]. 遗传, 2024, 46(3): 219-231. |
| [4] |
郑慧怡, 吴华煊, 杜志强. 肠道宏基因组图像增强和深度学习改善代谢性疾病分类预测精度[J]. 遗传, 2024, 46(10): 886-896. |
| [5] |
章子怡, 王棨临, 张俊有, 段迎迎, 刘家欣, 刘赵硕, 李春燕. 多组学数据驱动的机器学习模型在乳腺癌生存及治疗响应预测中的应用[J]. 遗传, 2024, 46(10): 820-832. |
| [6] |
王秉政, 张超, 张佳丽, 孙锦. 利用单转录本表达Cas9和sgRNA条件性编辑果蝇基因组[J]. 遗传, 2023, 45(7): 593-601. |
| [7] |
杜文珍, 李元敬, 吴佳玲, 陈思羽, 姜亮, 刘刚, 谢宁. 丝状真菌Podospora anserina AA11家族裂解多糖单加氧酶基因的鉴定和功能研究[J]. 遗传, 2023, 45(12): 1128-1146. |
| [8] |
陈栋, 王书杰, 赵真坚, 姬祥, 申琦, 余杨, 崔晟頔, 王俊戈, 陈子旸, 王金勇, 郭宗义, 吴平先, 唐国庆. 基于机器学习的猪生长性状基因组预测[J]. 遗传, 2023, 45(10): 922-932. |
| [9] |
刘梅珍, 王立人, 李咏梅, 马雪云, 韩红辉, 李大力. 利用CRISPR/Cas9技术构建基因编辑大鼠模型[J]. 遗传, 2023, 45(1): 78-87. |
| [10] |
张潇筠, 徐坤, 沈俊岑, 穆璐, 钱泓润, 崔婕妤, 马宝霞, 陈知龙, 张智英, 魏泽辉. 一种新型提高HDR效率的CRISPR/Cas9-Gal4BD供体适配基因编辑系统[J]. 遗传, 2022, 44(8): 708-719. |
| [11] |
张充, 魏子璇, 王敏, 陈瑶生, 何祖勇. 利用CRISPR/Cas9在人类黑色素瘤细胞中编辑MC1R与功能分析[J]. 遗传, 2022, 44(7): 581-590. |
| [12] |
孔永强, 刘金凯, 顾佳琪, 徐景怡, 郑雨诺, 魏以梁, 伍少远. 南-北方汉族人、韩国人和日本人遗传划分机器学习模型优化方案[J]. 遗传, 2022, 44(11): 1028-1043. |
| [13] |
刘尧, 周先辉, 黄舒泓, 王小龙. 引导编辑:突破碱基编辑类型的新技术[J]. 遗传, 2022, 44(11): 993-1008. |
| [14] |
韩玉婷, 许博文, 李羽童, 卢心怡, 董习之, 邱雨浩, 车沁耘, 朱芮葆, 郑丽, 李孝宸, 司绪, 倪建泉. 模式动物果蝇的基因调控前沿技术[J]. 遗传, 2022, 44(1): 3-14. |
| [15] |
杨光武, 田嫄. 果蝇F-box基因Ppa促进脂肪储存[J]. 遗传, 2021, 43(6): 615-622. |
|