[1] | Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini L, Zhang F . Multiplex genome engineering using CRISPR/Cas systems. Science, 2013,339(6121):819-823. | [2] | Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA . RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol, 2013,31(3):233-239. | [3] | Hsu PD, Lander ES, Zhang F . Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014,157(6):1262-1278. | [4] | Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD . High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol, 2013,31(9):822-826. | [5] | Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR . High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol, 2013,31(9):839-843. | [6] | Wong N, Liu W, Wang X . WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol, 2015,16:218. | [7] | Hinz JM, Laughery MF, Wyrick JJ . Nucleosomes inhibit Cas9 endonuclease activity in vitro. Biochemistry, 2015,54(48):7063-7066. | [8] | Horlbeck MA, Gilbert LA, Villalta JE, Adamson B, Pak RA, Chen Y, Fields AP, Park CY, Corn JE, Kampmann M, Weissman JS . Compact and highly active next- generation libraries for CRISPR-mediated gene repression and activation. Elife, 2016,5:e19760. | [9] | Lee CM, Davis TH, Bao G . Examination of CRISPR/ Cas9 design tools and the effect of target site accessibility on Cas9 activity. Exp Physiol, 2017,103(4):456-460. | [10] | Isaac RS, Jiang FG, Doudna JA, Lim WA, Narlikar GJ, Almeida R . Nucleosome breathing and remodeling constrain CRISPR-Cas9 function. Elife, 2016,5:e13450. | [11] | Kosicki M, Tomberg K, Bradley A . Repair of double- strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol, 2018,36(8):765-771. | [12] | Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1989. | [13] | Listgarten J, Weinstein M, Kleinstiver BP, Sousa AA, Joung JK, Crawford J, Gao K, Hoang L, Elibol M, Doench JG, Fusi N . Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs. Nat Biomed Eng, 2018,2(1):38-47. | [14] | Kim HK, Min S, Song M, Jung S, Choi JW, Kim Y, Lee S, Yoon S, Kim HH . Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity. Nat Biotechnol, 2018,36(3):239-241. | [15] | Lin Y, Cradick TJ, Brown MT, Deshmu |
[1] |
王秉政, 张超, 张佳丽, 孙锦. 利用单转录本表达Cas9和sgRNA条件性编辑果蝇基因组[J]. 遗传, 2023, 45(7): 593-601. |
[2] |
刘梅珍, 王立人, 李咏梅, 马雪云, 韩红辉, 李大力. 利用CRISPR/Cas9技术构建基因编辑大鼠模型[J]. 遗传, 2023, 45(1): 78-87. |
[3] |
张潇筠, 徐坤, 沈俊岑, 穆璐, 钱泓润, 崔婕妤, 马宝霞, 陈知龙, 张智英, 魏泽辉. 一种新型提高HDR效率的CRISPR/Cas9-Gal4BD供体适配基因编辑系统[J]. 遗传, 2022, 44(8): 708-719. |
[4] |
张充, 魏子璇, 王敏, 陈瑶生, 何祖勇. 利用CRISPR/Cas9在人类黑色素瘤细胞中编辑MC1R与功能分析[J]. 遗传, 2022, 44(7): 581-590. |
[5] |
孔永强, 刘金凯, 顾佳琪, 徐景怡, 郑雨诺, 魏以梁, 伍少远. 南-北方汉族人、韩国人和日本人遗传划分机器学习模型优化方案[J]. 遗传, 2022, 44(11): 1028-1043. |
[6] |
刘尧, 周先辉, 黄舒泓, 王小龙. 引导编辑:突破碱基编辑类型的新技术[J]. 遗传, 2022, 44(11): 993-1008. |
[7] |
韩玉婷, 许博文, 李羽童, 卢心怡, 董习之, 邱雨浩, 车沁耘, 朱芮葆, 郑丽, 李孝宸, 司绪, 倪建泉. 模式动物果蝇的基因调控前沿技术[J]. 遗传, 2022, 44(1): 3-14. |
[8] |
杨光武, 田嫄. 果蝇F-box基因Ppa促进脂肪储存[J]. 遗传, 2021, 43(6): 615-622. |
[9] |
彭定威, 李瑞强, 曾武, 王敏, 石翾, 曾检华, 刘小红, 陈瑶生, 何祖勇. 编辑MSTN半胱氨酸节基元促进两广小花猪肌肉生长[J]. 遗传, 2021, 43(3): 261-270. |
[10] |
王娜, 甲芝莲, 吴强. RFX5调控原钙粘蛋白α基因簇的表达[J]. 遗传, 2020, 42(8): 760-774. |
[11] |
李国玲, 杨善欣, 吴珍芳, 张献伟. 提高CRISPR/Cas9介导的动物基因组精确插入效率 研究进展[J]. 遗传, 2020, 42(7): 641-656. |
[12] |
陈赢男, 陆静. CRISPR/Cas9系统在林木基因编辑中的应用[J]. 遗传, 2020, 42(7): 657-668. |
[13] |
刘思远, 易国强, 唐中林, 陈斌. 基于CRISPR/Cas9系统在全基因组范围内筛选功能基因及调控元件研究进展[J]. 遗传, 2020, 42(5): 435-443. |
[14] |
胡雅丽, 戴睿, 刘永鑫, 张婧赢, 胡斌, 储成才, 袁怀波, 白洋. 水稻典型品种日本晴和IR24根系微生物组的解析[J]. 遗传, 2020, 42(5): 506-518. |
[15] |
鲍莉雯, 周一叶, 曾凡一. 基于CRISPR/Cas9技术的β-地中海贫血和血友病基因治疗研究进展[J]. 遗传, 2020, 42(10): 949-964. |
|