[1] | Buchan JR, Parker R . Eukaryotic stress granules: the ins and out of translation. Mol Cell, 2009,36(6):932-941. | [2] | Kedersha NL. Gupta M, Li W, Miller I, Anderson P . RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2α to the assembly of mammalian stress granules. J Cell Biol, 1999,147(7):1431-1442. | [3] | Jackson RJ, Hellen CU, Pestova TV . The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol, 2010,11(2):113-127. | [4] | Anderson P, Kedersha N . Stressful initiations. J Cell Sci, 2002,115(Pt 16):3227-3234. | [5] | Anderson P, Kedersha N . RNA granules. J Cell Biol, 2006,172(6):803-808. | [6] | Hua Y, Zhou J . Modulation of SMN nuclear foci and cytoplasmic localization by its C-terminus. Cell Mol Life Sci, 2004,61(19-20):2658-2663. | [7] | Thomas MG, Martinez Tosar LJ, Desbats MA, Leishman CC, Boccaccio GL . Mammalian staufen 1 is recruited to stress granules and impairs their assembly. J Cell Sci, 2009,122(Pt 4):563-573. | [8] | Tourrière H, Chebli K, Zekri L, Courselaud B, Blanchard JM, Bertrand E, Tazi J . The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol, 2003,160(6):823-831. | [9] | Wilczynska A, Aigueperse C, Kress M, Dautry F, Weil D . The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules. J Cell Sci, 2005,118(Pt 5):981-992. | [10] | Yang F, Peng Y, Murray EL, Otsuka Y, Kedersha N, Schoenberg DR . Polysome-bound endonuclease PMR1 is targeted to stress granules via stress-specific binding to TIA-1. Mol Cell Biol, 2006,26(23):8803-8813. | [11] | Chalupníková K, Lattmann S, Selak N, Iwamoto F, Fujiki Y, Nagamine Y . Recruitment of the RNA helicase RHAU to stress granules via a unique RNA-binding domain. J Biol Chem, 2008,283(50):35186-35198. | [12] | Wippich F, Bodenmiller B, Trajkovska MG, Wanka S, Aebersold R, Pelkmans L . Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell, 2013,152(4):791-805. | [13] | Okonski KM, Samuel CE . Stress granule formation induced by measles virus is protein kinase PKR dependent and impaired by RNA adenosine deaminase ADAR1. J Virol, 2012,87(2):756-766. | [14] | Onomoto K, Jogi M, Yoo JS, Narita R, Morimoto S, Takemura A, Sambhara S, Kawaguchi A, Osari S, Nagata K, Matsumiya T, Namiki H, Yoneyama M, Fujita T . Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity. PLoS One, 2012,7(8):e43031. | [15] | McEwen E, Kedersha N, Song B, Scheuner D, Gilks N, Han A, Chen JJ, Anderson P, Kaufman RJ . Heme- regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure. J Biol Chem, 2005,280(17):16925-16933. | [16] | Lu L, Han AP, Chen JJ . Translation initiation control by heme-regulated eukaryotic initiation factor 2alpha kinase in erythroid cells under cytoplasmic stresses. Mol Cell Biol, 2001,21(23):7971-7980. | [17] | Sheree A. Wek SZ, Wek RC . The histidyl-tRNA synthetase-related sequence in the elf-2α protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Mol Cell Biol, 1995,15(8):4497-4506. | [18] | Jing D HPH, Brian R . Activation of GCN2 in UV-irradiated cells inhibits translation. Curr Biol, 2002,12(15):1279-1286. | [19] | García MA, Meurs EF, Esteban M . The dsRNA protein kinase PKR: virus and cell control. Biochimie, 2007,89(6-7):799-811. | [20] | Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D . Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell, 2000,5(5):897-904. | [21] | Zoncu R, Efeyan A, Sabatini DM . MTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol, 2011,12(1):21-35. | [22] | von der Haar T, Gross JD, Wagner G, McCarthy JE . The mRNA cap-binding protein eIF4E in post-transcriptional gene expression. Nat Struct Mol Biol, 2004,11(6):503-511. | [23] | Panniers R . Translational control during heat shock. Biochimie, 1994,76:737-747. | [24] | Thomas MG, Loschi M, Desbats MA, Boccaccio GL . RNA granules: the good, the bad and the ugly. Cell Signal, 2011,23(2):324-334. | [25] | Novoa I, Zhang Y, Zeng H, Jungreis R, Harding HP, Ron D . Stress-induced gene expression requires programmed recovery from translational repression. EMBO J, 2003,22(5):1180-1187. | [26] | Dang Y, Kedersha N, Low WK, Romo D, Gorospe M, Kaufman R, Anderson P, Liu JO . Eukaryotic initiation factor 2alpha-independent pathway of stress granule induction by the natural product pateamine A. J Biol Chem, 2006,281(43):32870-32878. | [27] | Mazroui R, Sukarieh R, Bordeleau ME, Kaufman RJ, Northcote P, Tanaka J, Gallouzi I, Pelletier J . Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2alpha phosphorylation. Mol Biol Cell, 2006,17(10):4212-4219. | [28] | Fujimura K, Sasaki AT, Anderson P . Selenite targets eIF4E-binding protein-1 to inhibit translation initiation and induce the assembly of non-canonical stress granules. Nucleic Acids Res, 2012,40(16):8099-8110. | [29] | Emara MM, Fujimura K, Sciaranghella D, Ivanova V, Ivanov P, Anderson P . Hydrogen peroxide induces stress granule formation independent of eIF2α phosphorylation. Biochem Bioph Res Co, 2012,423(4):763-769. | [30] | Kwon S, Zhang Y, Matthias P . The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. Gene Dev, 2007,21(24):3381-3394. | [31] | Leung AK, Vyas S, Rood JE, Bhutkar A, Sharp PA, Chang P . Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol Cell, 2011,42(4):489-499. | [32] | Ohn T, Kedersha N, Hickman T, Tisdale S, Anderson P . A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly. Nat Cell Biol, 2008,10(10):1224-1231. | [33] | Tsai WC, Gayatri S, Reineke LC, Sbardella G, Bedford MT, Lloyd RE . Arginine demethylation of G3BP1 promotes stress granule assembly. J Biol Chem, 2016,291(43):22671-22685. | [34] | Jayabalan AK, Sanchez A, Park RY, Yoon SP, Kang GY, Baek JH, Anderson P, Kee Y, Ohn T . NEDDylation promotes stress granule assembly. Nat Commun, 2016,7:12125. | [35] | Kedersha N, Ivanov P, Anderson P . Stress granules and cell signaling: more than just a passing phase? Trends Biochem Sci, 2013,38(10):494-506. | [36] | Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M, Rousseau F, Schymkowitz J, Shorter J, Wolozin B, Van Den Bosch L, Tompa P, Fuxreiter M . Protein phase separation: a new phase in cell biology. Trends Cell Biol, 2018,28(6):420-435. | [37] | Takahara T, Maeda T . Transient sequestration of TORC1 into stress granules during heat stress. Mol Cell, 2012,47(2):242-252. | [38] | Buchan R, Kolaitis RM, Taylor JP, Parker R . Eukaryotic stress granules are cleared by autophagy and Cdc48VCP function. Cell, 2013,153(7):1461-1474. | [39] | Chitiprolu M, Jagow C, Tremblay V, Bondy-Chorney E, Paris G, Savard A, Palidwor G, Barry FA, Zinman L, Keith J, Rogaeva E, Robertson J, Lavallée-Adam M, Woulfe J, Couture JF, C?té J, Gibbings D . A complex of C9ORF72 and p62 uses arginine methylation to eliminate stress granules by autophagy. Nat Commun, 2018,9(1):2794. | [40] | McInerney GM, Kedersha NL, Kaufman RJ, Anderson P, Liljestr?m P . Importance of eIF2alpha phosphorylation and stress granule assembly in alphavirus translation regulation. Mol Biol Cell, 2005,16(8):3753-3763. | [41] | Sciortino MT, Parisi T, Siracusano G, Mastino A, Taddeo B, Roizman B . The virion host shutoff RNase plays a key role in blocking the activation of protein kinase R in cells infected with herpes simplex virus 1. J Virol, 2013,87(6):3271-3276. | [42] | Cassady KA, Gross M . The Herpes Simplex virus type 1 U(S)11 protein interacts with protein kinase R in infected cells and requires a 30-amino-acid sequence adjacent to a kinase substrate domain. J Virol, 2002,76(5):2029-2035. | [43] | He B, Gross M, Roizman B . The γ134.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1α to dephosphorylate the α subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA- activated protein kinase. Proc Natl Acad Sci USA, 1996,94(3):843-848. | [44] | Mulvey M, Arias C, Mohr I . Maintenance of endoplasmic reticulum (ER) homeostasis in herpes simplex virus type 1-infected cells through the association of a viral glycoprotein with PERK, a cellular ER stress sensor. J Virol, 2007,81(7):3377-3390. | [45] | Esclatine A, Taddeo B, Roizman B . Herpes simplex virus 1 induces cytoplasmic accumulation of TIA-1/TIAR and both synthesis and cytoplasmic accumulation of tristetraprolin, two cellular proteins that bind and destabilize AU-rich RNAs. J Virol, 2004,78(16):8582-8592. | [46] | Dauber B, Poon D, Dos Santos T, Duguay BA, Mehta N, Saffran HA, Smiley JR . The herpes simplex virus virion host shutoff protein enhances translation of viral true late mRNAs independently of suppressing protein kinase R and stress granule formation. J Virol, 2016,90(13):6049-6057. | [47] | Burgess HM, Mohr I . Defining the role of stress granules in innate immune suppression by the herpes simplex virus 1 endoribonuclease VHS. J Virol, 2018,92(15):e00829-18. | [48] | Finnen RL, Pangka KR, Banfield BW . Herpes simplex virus 2 infection impacts stress granule accumulation. J Virol, 2012,86(15):8119-8130. | [49] | Finnen RL, Hay TJ, Dauber B, Smiley JR, Banfield BW . The herpes simplex virus 2 virion-associated ribonuclease vhs interferes with stress granule formation. J Virol, 2014,88(21):12727-12739. | [50] | Katsafanas GC, Moss B . Vaccinia virus intermediate stage transcription is complemented by Ras-GTPase- activating protein SH3 domain-binding protein (G3BP) and cytoplasmic activation/proliferation-associated protein (p137) individually or as a heterodimer. J Biol Chem, 2004,279(50):52210-52217. | [51] | Katsafanas GC, Moss B . Linkage of transcription and translation within cytoplasmic poxvirus DNA factories provides a mechanism to coordinate viral and usurp host functions. Cell Host Microbe, 2007,2(4):221-228. | [52] | Zaborowska I, Kellner K, Henry M, Meleady P, Walsh D . Recruitment of host translation initiation factor eIF4G by the Vaccinia Virus ssDNA-binding protein I3. Virology, 2012,425(1):11-22. | [53] | Walsh D, Arias C, Perez C, Halladin D, Escandon M, Ueda T, Watanabe-Fukunaga R, Fukunaga R, Mohr I . Eukaryotic translation initiation factor 4F architectural alterations accompany translation initiation factor redistribution in poxvirus-infected cells. Mol Cell Biol, 2008,28(8):2648-2658. | [54] | Simpson-Holley M, Kedersha N, Dower K, Rubins KH, Anderson P, Hensley LE, Connor JH . Formation of antiviral cytoplasmic granules during orthopoxvirus infection. J Virol, 2011,85(4):1581-1593. | [55] | Montero H, Rojas M, Arias CF, López S . Rotavirus infection induces the phosphorylation of eIF2alpha but prevents the formation of stress granules. J Virol, 2008,82(3):1496-1504. | [56] | Rojas M, Arias CF, López S . Protein kinase R is responsible for the phosphorylation of eIF2α in rotavirus infection. J Virol, 2010,84(20):10457-10466. | [57] | Qin Q, Hastings C, Miller CL . Mammalian orthoreovirus particles induce and are recruited into stress granules at early times postinfection. J Virol, 2009,83(21):11090-11101. | [58] | Qin Q, Carroll K, Hastings C, Miller CL . Mammalian orthoreovirus escape from host translational shutoff correlates with stress granule disruption and is independent of eIF2alpha phosphorylation and PKR. J Virol, 2011,85(17):8798-8810. | [59] | Carroll K, Hastings C, Miller CL . Amino acids 78 and 79 of mammalian orthoreovirus protein μNS are necessary for stress granule localization, core proteinλ2 interaction, and de novo virus replication. Virology, 2014,448:133-145. | [60] | Dougherty JD, Tsai WC, Lloyd RE . Multiple poliovirus proteins repress cytoplasmic RNA granules. Viruses, 2015,7(12):6127-6140. | [61] | White JP, Cardenas AM, Marissen WE, Lloyd RE . Inhibition of cytoplasmic mRNA stress granule formation by a viral proteinase. Cell Host Microbe, 2007,2(5):295-305. | [62] | Piotrowska J, Hansen SJ, Park N, Jamka K, Sarnow P, Gustin KE . Stable formation of compositionally unique stress granules in virus-infected cells. J Virol, 2010,84(7):3654-3665. | [63] | Ng CS, Jogi M, Yoo JS, Onomoto K, Koike S, Iwasaki T, Yoneyama M, Kato H, Fujita T . Encephalomyocarditis virus disrupts stress granules, the critical platform for triggering antiviral innate immune responses. J Virol, 2013,87(17):9511-9522. | [64] | Fung G, Ng CS, Zhang J, Shi J, Wong J, Piesik P, Han L, Chu F, Jagdeo J, Jan E, Fujita T, Luo H . Production of a dominant-negative fragment due to G3BP1 cleavage contributes to the disruption of mitochondria-associated protective stress granules during CVB3 infection. PLoS One, 2013,8(11):e79546. | [65] | Borghese F, Michiels T . The leader protein of cardioviruses inhibits stress granule assembly. J Virol, 2011,85(18):9614-9622. | [66] | Reineke LC, Kedersha N. Langereis MA, van Kuppeveld FJ, Lloyd RE , Stress granules regulate double-stranded RNA-dependent protein kinase activation through a complex containing G3BP1 and Caprin1. MBio, 2015,6(2):e02486. | [67] | Visser LG, Medina GN Rabouw HH, de Groot RG, Langereis MA, de los Santos T, van Kuppeveld FJM . Foot-and-Mouth disease leader protease cleaves G3BP1 and G3BP2 and inhibits stress granule formation. J Virol, 2019,93(2):e00922-18. | [68] | Yang X, Hu Z, Fan S, Zhang Q, Zhong Y, Guo D, Qin Y, Chen M . Picornavirus 2A protease regulates stress granule formation to facilitate viral translation. PLoS Pathog, 2018,14(2):e1006901. | [69] | Li W, Li Y, Kedersha N, Anderson P, Emara M, Swiderek KM, Moreno GT, Brinton MA . Cell proteins TIA-1 and TIAR interact with the 3' Stem-Loop of the West nile virus complementary minus-strand RNA and facilitate virus replication. J Virol, 2002,76(23):11989-12000. | [70] | Courtney SC, Scherbik SV, Stockman BM, Brinton MA . West nile virus infections suppress early viral RNA synthesis and avoid inducing the cell stress granule response. J Virol, 2012,86(7):3647-3657. | [71] | Shives KD, Beatman EL, Chamanian M O'Brien C, Hobson-Peters J, Beckham JD , . West nile virus-induced activation of mammalian target of rapamycin complex 1 supports viral growth and viral protein expression. J Virol, 2014,88(16):9458-9471. | [72] | Xia J, Chen X, Xu F, Wang Y, Shi Y, Li Y, He J, Zhang P . Dengue virus infection induces formation of G3BP1 granules in human lung epithelial cells. Arch Virol, 2015,160(12):2991-2999. | [73] | Bidet K, Dadlani D, Garcia-Blanco MA . G3BP1, G3BP2 and CAPRIN1 are required for translation of interferon stimulated mRNAs and are targeted by a dengue virus non-coding RNA. PLoS Pathog, 2014,10(7):e1004242. | [74] | Zhang HW, Meng XY, Li LF, Yang YY, Qiu HJ . Long non-coding RNAs: Emerging regulators of antiviral innate immune responses. Hereditas(Beijing), 2018,40(7):525-533 | [74] | 张华伟, 孟星宇, 李连峰, 杨玉莹, 仇华吉 . 长链非编码RNA——抗病毒天然免疫应答的新兴调控因子. 遗传, 2018,40(7):525-533. | [75] | Albornoz A, Carletti T, Corazza G, Marcello A . The stress granule component TIA-1 binds tick-borne encephalitis virus RNA and is recruited to perinuclear sites of viral replication to inhibit viral translation. J Virol, 2014,88(12):6611-6622. | [76] | Katoh H, Okamoto T, Fukuhara T, Kambara H, Morita E, Mori Y, Kamitani W, Matsuura Y . Japanese encephalitis virus core protein inhibits stress granule formation through an interaction with Caprin-1 and facilitates viral propagation. J Virol, 2013,87(1):489-502. | [77] | Garaigorta U, Heim MH, Boyd B, Wieland S, Chisari FV . Hepatitis C virus (HCV) induces formation of stress granules whose proteins regulate HCV RNA replication and virus assembly and egress. J Virol, 2012,86(20):11043-11056. | [78] | Ruggieri A, Dazert E, Metz P, Hofmann S, Bergeest JP, Mazur J, Bankhead P, Hiet MS, Kallis S, Alvisi G, Samuel CE, Lohmann V, Kaderali L, Rohr K, Frese M, Stoecklin G, Bartenschlager R . Dynamic oscillation of translation and stress granule formation mark the cellular response to virus infection. Cell Host Microbe, 2012,12(1):71-85. | [79] | Li Q, Pène V, Krishnamurthy S, Cha H, Liang TJ . Hepatitis C virus infection activates an innate pathway involving IKK-αin lipogenesis and viral assembly, Nat Med, 2013,19(6):722-729. | [80] | Hou S, Kumar A, Xu Z, Airo AM, Stryapunina I, Wong CP, Branton W, Tchesnokov E, G?tte M, Power C, Hobman TC . Zika virus hijacks stress granule proteins and modulates the host stress response. J Virol, 2017,91(16):e00474-17. | [81] | Amorim R, Temzi A, Griffin BD, Mouland AJ . Zika virus inhibits eIF2α-dependent stress granule assembly. PLoS Negl Trop Dis, 2017,11(7):e0005775. | [82] | Raaben M, Groot Koerkamp MJ Rottier PJ, de Haan CA, . Mouse hepatitis coronavirus replication induces host translational shutoff and mRNA decay, with concomitant formation of stress granules and processing bodies. Cell Microbiol, 2007,9(9):2218-2229. | [83] | Sola I, Galán C, Mateos-Gómez PA, Palacio L, Zú?iga S, Cruz JL, Almazán F, Enjuanes L . The polypyrimidine tract-binding protein affects coronavirus RNA accumulation levels and relocalizes viral RNAs to novel cytoplasmic domains different from replication-transcription sites. J Virol, 2011,85(10):5136-5149. | [84] | Nakagawa K, Narayanan K, Wada M, Makino S . Inhibition of stress granule formation by middle east respiratory syndrome coronavirus 4a accessory protein facilitates viral translation, leading to efficient virus replication. J Virol, 2018,92(20):e00902-18. | [85] | Utt A, Das PK, Varjak M, Lulla V, Lulla A, Merits A . Mutations conferring a noncytotoxic phenotype on chikungunya virus replicons compromise enzymatic properties of nonstructural protein 2. J Virol, 2014,89(6):3145-3162. | [86] | Khaperskyy DA, Hatchette TF, McCormick C . Influenza a virus inhibits cytoplasmic stress granule formation. Faseb J, 2011,26(4):1629-1639. | [87] | Mok BWY, Song W, Wang P, Tai H, Chen Y, Zheng M, Wen X, Lau SY, Wu WL, Matsumoto K, Yuen KY, Chen H . The NS1 protein of influenza a virus interacts with cellular processing bodies and stress granules through RNA-associated protein 55 (RAP55) during virus infection. J Virol, 2012,86(23):12695-12707. | [88] | Khaperskyy DA, Emara MM, Johnston BP, Anderson P, Hatchette TF, McCormick C . Influenza a virus host shutoff disables antiviral stress-induced translation arrest. PLoS Pathog, 2014,10(7):e1004217. | [89] | Thulasi Raman SN, Liu G, Pyo HM, Cui YC, Xu F, Ayalew LE, Tikoo SK, Zhou Y . DDX3 Interacts with influenza a virus NS1 and NP proteins and exerts antiviral function through regulation of stress granule formation. J Virol, 2016,90(7):3661-3675. | [90] | Nú?ez RD, Budt M, Saenger S, Paki K, Arnold U, Sadewasser A, Wolff T . The RNA helicase DDX6 associates with RIG-I to augment induction of antiviral signaling. Int J Mol Sci, 2018,19(7). DOI: 10.3390/ ijms19071877. | [91] | Dinh PX, Beura LK, Das PB, Panda D, Das A, Pattnaik AK . Induction of stress granule-like structures in vesicular stomatitis virus-infected cells. J Virol, 2013,87(1):372-383. | [92] | Lindquist ME, Mainou BA, Dermody TS, Crowe JE Jr . Activation of protein kinase R is required for induction of stress granules by respiratory syncytial virus but dispensable for viral replication. Virology, 2011,413(1):103-110. | [93] | Lindquist ME, Lifland AW, Utley TJ, Santangelo PJ, Crowe JE Jr . Respiratory syncytial virus induces host RNA stress granules to facilitate viral replication. J Virol, 2010,84(23):12274-12284. | [94] | Lifland AW, Jung J, Alonas E, Zurla C, Crowe JE Jr, Santangelo PJ . Human respiratory syncytial virus nucleoprotein and inclusion bodies antagonize the innate immune response mediated by MDA5 and MAVS. J Virol, 2012,86(15):8245-8258. | [95] | Fricke J, Koo LY, Brown CR, Collins PL . P38 and OGT sequestration into viral inclusion bodies in cells infected with human respiratory syncytial virus suppresses MK2 activities and stress granule assembly. J Virol, 2012,87(3):1333-1347. | [96] | Randall RE, Goodbourn S . Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol, 2008,89(Pt 1):1-47. | [97] | Iseni F, Garcin D, Nishio M, Kedersha N, Anderson P, Kolakofsky D . Sendai virus trailer RNA binds TIAR, a cellular protein involved in virus-induced apoptosis. Embo J, 2002,21(19):5141-5150. | [98] | Valiente-Echeverría F, Hermoso MA, Soto-Rifo R . RNA helicase DDX3: at the crossroad of viral replication and antiviral immunity. Rev Med Virol, 2015,25(5):286-299. | [99] | Mir MA, Duran WA, Hjelle BL, Ye C, Panganiban AT . Storage of cellular 5′ mRNA caps in P bodies for viral cap-snatching. Proc Natl Acad Sci USA, 2008,105(49):19294-19299. | [100] | Hopkins KC, Tartell MA, Herrmann C, Hackett BA, Taschuk F, Panda D, Menghani SV, Sabin LR, Cherry S . Virus-induced translational arrest through 4EBP1/2- dependent decay of 5'-TOP mRNAs restricts viral infection. Proc Natl Acad Sci USA, 2015,112(22):E2920-E2929. | [101] | Cimica V, Dalrymple NA, Roth E, Nasonov A, Mackow ER . An innate immunity-regulating virulence determinant is uniquely encoded by the Andes virus nucleocapsid protein. MBio, 2014,5(1):e01088-13. | [102] | Matthys VS, Cimica V, Dalrymple NA, Glennon NB, Bianco C, Mackow ER . Hantavirus GnT elements mediate TRAF3 binding and inhibit RIG-I/TBK1-directed beta interferon transcription by blocking IRF3 phosphorylation. J Virol, 2014,88(4):2246-2259. | [103] | Wang Z, Mir MA . Andes virus nucleocapsid protein interrupts protein kinase R dimerization to counteract host interference in viral protein synthesis. J Virol, 2015,89(3):1628-1639. | [104] | Fang J, Pietzsch C, Ramanathan P, Santos RI, Ilinykh PA, Garcia-Blanco MA, Bukreyev A, Bradrick SS . Staufen1 interacts with multiple components of the ebola virus ribonucleoprotein and enhances viral RNA synthesis. MBio, 2018,9(5):e01771-18. | [105] | Legros S, Boxus M, Gatot JS, Van Lint C, Kruys V, Kettmann R, Twizere JC, Dequiedt F . The HTLV-1 tax protein inhibits formation of stress granules by interacting with histone deacetylase 6. Oncogene, 2011,30(38):4050-4062. | [106] | Takahashi M, Higuchi M, Makokha GN, Matsuki H, Yoshita M, Tanaka Y, Fujii M . HTLV-1 tax oncoprotein stimulates ROS production and apoptosis in T cells by interacting with USP10. Blood, 2013,122(5):715-725. | [107] | Abrahamyan LG, Chatel-Chaix L, Ajamian L, Milev MP, Monette A, Clément JF, Song R, Lehmann M, DesGroseillers L, Laughrea M, Boccaccio G, Mouland AJ . Novel Staufen1 ribonucleoproteins prevent formation of stress granules but favour encapsidation of HIV-1 genomic RNA. J Cell Sci, 2010,123(Pt 3):369-383. | [108] | Henao-Mejia J, Liu Y, Park IW, Zhang J, Sanford J, He JJ . Suppression of HIV-1 Nef translation by Sam68 mutant-induced stress granules and nef mRNA sequestration. Mol Cell, 2009,33(1):87-96. | [109] | Valiente-Echeverría F, Melnychuk L, Vyboh K, Ajamian L, Gallouzi IE, Bernard N, Mouland AJ . EEF2 and Ras- GAP SH3 domain-binding protein (G3BP1) modulate stress granule assembly during HIV-1 infection. Nat Commun, 2014,5:4819. | [110] | Jiménez VC, Martinez FO, Booiman T, van Dort KA, van de Klundert MAA, Gordon S, Geijtenbeek TB, Kootstra NA . G3BP1 restricts HIV-1 replication in macrophages and T-cells by sequestering viral RNA. Virology, 2015,486:94-104. | [111] | Cinti A, Le Sage V, Ghanem M, Mouland AJ . HIV-1 gag blocks selenite-induced stress granule assembly by altering the mRNA Cap-Binding complex. MBio, 2016,7(2):e00329. | [112] | Rao S, Temzi A, Amorim R, You JC, Mouland AJ . HIV-1 NC-induced stress granule assembly and translation arrest are inhibited by the dsRNA binding protein Staufen1. RNA, 2018,24(2):219-236. | [113] | Nelson EV, Schmidt KM, Deflubé LR, Do?anay S, Banadyga L, Olejnik J, Hume AJ, Ryabchikova E, Ebihara H, Kedersha N, Ha T, Mühlberger E . Ebola virus does not induce stress granule formation during infection and sequesters stress granule proteins within viral inclusions. J Virol, 2016,90(16):7268-7284. | [114] | Lu B, Nakamura T, Inouye K, Li J, Tang Y, Lundb?ck P, Valdes-Ferrer SI, Olofsson PS, Kalb T, Roth J, Zou Y, Erlandsson-Harris H, Yang H, Ting JP, Wang H, Andersson U, Antoine DJ, Chavan SS, Hotamisligil GS, Tracey KJ . Novel role of PKR in inflammasome activation and HMGB1 release. Nature, 2012,488(7413):670-674. | [115] | Taghavi N, Samuel CE . Protein kinase PKR catalytic activity is required for the PKR-dependent activation of mitogen-activated protein kinases and amplification of interferon beta induction following virus infection. Virology, 2012,427(2):208-216. | [116] | Reikine S, Nguyen JB, Modis Y . Pattern recognition and signaling mechanisms of RIG-I and MDA5. Front Immunol, 2014,5:342. | [117] | Wu B, Hur S . How RIG-I like receptors activate MAVS. Curr Opin Virol, 2015,12:91-98. | [118] | George CX, Ramaswami G, Li JB, Samuel CE . Editing of cellular self-RNAs by adenosine deaminase ADAR1 suppresses innate immune stress responses. J Biol Chem, 2016,291(12):6158-6168. | [119] | Silverman RH . Viral encounters with 2°,5°-oligoadenylate synthetase and RNase L during the interferon antiviral response. J Virol, 2007,81(23):12720-12729. | [120] | Chaudhry Y, Nayak A, Bordeleau ME, Tanaka J, Pelletier J, Belsham GJ, Roberts LO, Goodfellow IG . Caliciviruses differ in their functional requirements for eIF4F components. J Biol Chem, 2006,281(35):25315-25325. | [121] | Clavarino G, Cláudio N, Dalet A, Terawaki S, Couderc T, Chasson L, Ceppi M, Schmidt EK, Wenger T, Lecuit M, Gatti E, Pierre P . Protein phosphatase 1 subunit Ppp1r15a/ GADD34 regulates cytokine production in polyinosinic: polycytidylic acid-stimulated dendritic cells. Proc Natl Acad Sci USA, 2012,109(8):3006-3011. |
|