遗传 ›› 2020, Vol. 42 ›› Issue (5): 444-451.doi: 10.16288/j.yczz.19-311
收稿日期:
2019-12-05
修回日期:
2020-04-28
出版日期:
2020-05-20
发布日期:
2020-05-07
通讯作者:
岑山
E-mail:shancen@imb.pumc.edu.cn
作者简介:
陈淑敏,在读博士研究生,专业方向:SLFN蛋白抑制HIV-1机制研究。E-mail: chenshumin1993@163.com
基金资助:
Shumin Chen, Ling Ma, Shan Cen()
Received:
2019-12-05
Revised:
2020-04-28
Online:
2020-05-20
Published:
2020-05-07
Contact:
Cen Shan
E-mail:shancen@imb.pumc.edu.cn
Supported by:
摘要:
Schlafen (SLFN)家族基因是在人类与小鼠中首先被发现的具有调控细胞生长及T细胞分化等诸多生物学功能的重要基因。该家族基因在小鼠、马和人等各个物种中广泛存在并具有较高的同源性。研究表明,SLFN蛋白在抑制细胞增殖、驱动减数分裂、调控造血细胞、下调血小板数量及调节免疫应答等方面均起到重要的作用,同时还可抑制HIV-1和流感等病毒复制。此外,SLFN蛋白还被发现与肿瘤的治疗密切相关,可以作为预测肿瘤发展进程和化疗敏感性的分子标记。本文介绍了SLFN家族蛋白的分类、结构和主要特征、定位与功能,重点综述了其在肿瘤和病毒感染等相关领域的研究进展,以期为SLFN蛋白新功能的探究提供新思路,对蛋白发挥作用的可能机制给予提示,并为各相关领域的研究提供参考。
陈淑敏, 马铃, 岑山. Schlafen家族蛋白在肿瘤和病毒感染中的研究进展[J]. 遗传, 2020, 42(5): 444-451.
Shumin Chen, Ling Ma, Shan Cen. Progress of SLFN family proteins in tumor and virus infection[J]. Hereditas(Beijing), 2020, 42(5): 444-451.
表1
SLFN在肿瘤研究中的进展"
SLFN | 对肿瘤细胞的影响 | 参考文献 |
---|---|---|
m-SLFN2 | 抑制肿瘤细胞转移;激活c-Jun、NFATc1蛋白表达,诱导破骨细胞癌变;抑制黑色素瘤细胞增殖 | [24,25,29] |
m-SLFN3 | 抑制CSC增殖分化,提高结肠癌细胞对抗肿瘤药物敏感性 | [30] |
h-SLFN5 | 抑制黑色素瘤细胞锚定依赖生长;胃癌细胞高表达,可作为胃癌发展过程组织学诊断标志 | [13,26] |
h-SLFN11 | 靶向剪切胞内ATR/ATM蛋白翻译所需tRNA,提高肿瘤细胞对电离辐射、拓扑异构酶抑制剂 以及DDA敏感性,促进肿瘤细胞周期停滞和凋亡 | [31~35] |
h-SLFN12 | SLFN12-PDE3A复合物下调胞内Bcl-2和Mcl-1蛋白水平,靶向诱导PDE3A高表达肿瘤细胞凋亡 | [27,28,36,37] |
[1] |
Schwarz DA, Katayama CD, Hedrick SM . Schlafen, a new family of growth regulatory genes that affect thymocyte development . Immunity, 1998,9(5):657-668.
doi: 10.1016/S1074-7613(00)80663-9 |
[2] | Lund S, Christensen KV, Hedtjärn M, Mortensen AL, Hagberg H, Falsig J, Hasseldam H, Schrattenholz A, Pörzgen P, Leist M . The dynamics of the LPS triggered inflammatory response of murine microglia under different culture and in vivo conditions. J Neuroimmunol, 2006,180(1-2):71-87. |
[3] |
Geserick P, Kaiser F, Klemm U, Kaufmann SH, Zerrahn J . Modulation of T cell development and activation by novel members of the Schlafen (slfn) gene family harbouring an RNA helicase-like motif . Int Immunol, 2004. 16(10):1535-1548.
doi: 10.1093/intimm/dxh155 |
[4] |
Razzak M . Genetics: Schlafen 11 naturally blocks HIV . Nat Rev Urol, 2012,9(11):605.
doi: 10.1038/nrurol.2012.188 |
[5] |
Bustos O, Naik S, Ayers G, Casola C, Perez-Lamigueiro MA, Chippindale PT, Pritham EJ, de la Casa-Esperón E,. Evolution of the Schlafen genes, a gene family associated with embryonic lethality, meiotic drive, immune processes and orthopoxvirus virulence. Gene, 2009,447(1):1-11.
doi: 10.1016/j.gene.2009.07.006 |
[6] |
Neumann B, Zhao L, Murphy K, Gonda TJ . Subcellular localization of the Schlafen protein family. Biochem Biophys Res Commun, 2008,370(1):62-66.
doi: 10.1016/j.bbrc.2008.03.032 |
[7] |
Brady G, Boggan L, Bowie A, O'Neill LA. Schlafen-1 causes a cell cycle arrest by inhibiting induction of cyclin D1. J Biol Chem, 2005,280(35):30723-30734.
doi: 10.1074/jbc.M500435200 |
[8] | Liu XJ, Lou HQ . Single molecular biology: coming of age in DNA replication. Hereditas(Beijing), 2017,39(9):771-774. |
刘晓晶, 楼慧强 . DNA复制研究步入单分子时代. 遗传, 2017,39(9):771-774. | |
[9] |
Omar I, Guterman-Ram G, Rahat D, Tabach Y, Berger M, Levaot N . Schlafen2 mutation in mice causes an osteopetrotic phenotype due to a decrease in the number of osteoclast progenitors. Sci Rep, 2018,8(1):13005.
doi: 10.1038/s41598-018-31428-z |
[10] | Cui JJ, Tian GS, Tian D, Zeng Z . An integrated biological model for interferon signaling pathway and its gene polymorphisms. Hereditas(Beijing), 2008,30(6):788-794. |
崔建军, 田庚善, 田地, 曾争 . 干扰素信号传导通路与其基因组多态性网络模型的建立. 遗传, 2008,30(6):788-794. | |
[11] | Fischietti M, Arslan AD, Sassano A, Saleiro D, Majchrzak-Kita B, Ebine K, Munshi HG, Fish EN, Platanias LC . Slfn2 regulates type i interferon responses by modulating the NF-κB pathway. Mol Cell Biol, 2018,38(16):e00053-18. |
[12] |
Condamine T, Le Luduec JB, Chiffoleau E, Bériou G, Louvet C, Heslan M, Tilly G, Cuturi MC . Characterization of Schlafen-3 expression in effector and regulatory T cells. J Leukoc Biol, 2010,87(3):451-456.
doi: 10.1189/jlb.0609410 |
[13] |
Walsh MF, Hermann R, Sun KL, Basson MD . Schlafen 3 changes during rat intestinal maturation. Am J Surg, 2012,204(5):598-601.
doi: 10.1016/j.amjsurg.2012.07.004 |
[14] |
Patel BB, Yu YJ, Du JH, Rishi AK, Sarkar FH, Tarca AL, Wali A, Majumdar APN . Schlafen 3, a novel gene, regulates colonic mucosal growth during aging. Am J Physiol Gastrointest Liver Physiol, 2009,296(4):G955-G962.
doi: 10.1152/ajpgi.90726.2008 |
[15] | Guo F, Luo ZW, Liu ZY, Li YQ, Li HJ, Zhou TH . Studies of effect of prosaposin on cell proliferation, cell apoptosis and its possible molecular mechanism. Hereditas(Beijing), 2009,31(12):1226-1232. |
郭芬, 罗志文, 刘兆宇, 李月琴, 李泓剑, 周天鸿 . prosaposin对细胞增殖和凋亡的调控及其分子机制. 遗传, 2009,31(12):1226-1232. | |
[16] |
Katsoulidis E, Mavrommatis E, Woodard J, Shields MA, Sassano A, Carayol N, Sawicki KT, Munshi HG, Platanias LC . Role of interferon {α} (IFN{α})-inducible Schlafen-5 in regulation of anchorage-independent growth and invasion of malignant melanoma cells. J Biol Chem, 2010,285(51):40333-40341.
doi: 10.1074/jbc.M110.151076 |
[17] |
Li MQ, Kao E, Gao X, Sandig H, Limmer K, Pavon- Eternod M, Jones TE, Landry S, Pan T, Weitzman MD, David M . Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11. Nature, 2012,491(7422):125-128.
doi: 10.1038/nature11433 |
[18] |
Pisareva VP, Muslimov IA, Tcherepanov A, Pisarev AV . Characterization of novel ribosome-associated endoribonuclease SLFN14 from rabbit reticulocytes. Biochemistry, 2015,54(21):3286-3301.
doi: 10.1021/acs.biochem.5b00302 |
[19] |
Puck A, Aigner R, Modak M, Cejka P, Blaas D, Stöckl J . Expression and regulation of Schlafen (SLFN) family members in primary human monocytes, monocyte-derived dendritic cells and T cells. Results Immunol, 2015,5:23-32.
doi: 10.1016/j.rinim.2015.10.001 |
[20] |
Yang JY, Deng XY, Li YS, Ma XC, Feng JX, Yu B, Chen Y, Luo YL, Wang X, Chen ML, Fang ZX, Zheng FX, Li YP, Zhong Q, Kang TB, Song LB, Xu RH, Zeng MS, Chen W, Zhang H, Xie W, Gao S . Structure of Schlafen13 reveals a new class of tRNA/rRNA- targeting RNase engaged in translational control. Nat Commun, 2018,9(1):1165.
doi: 10.1038/s41467-018-03544-x |
[21] |
Saes JL, Simons A, de Munnik SA, Nijziel MR, Blijlevens NMA, Jongmans MC, van der Reijden BA, Smit Y, Brons PP, van Heerde WL, Schols SEM. Whole exome sequencing in the diagnostic workup of patients with a bleeding diathesis. Haemophilia, 2019,25(1):127-135.
doi: 10.1111/hae.2019.25.issue-1 |
[22] |
Stapley RJ, Pisareva VP, Pisarev AV, Morgan NV . SLFN14 gene mutations associated with bleeding. Platelets, 2019,31(3):407-410.
doi: 10.1080/09537104.2019.1648781 |
[23] |
Su W, Wang RC, Lohano MK, Wang L, Zhu P, Luo Y, Guo LJ, Lv Q, Jiang H, Wang JH, Mei L, Weng J, Su L, Dong NG . Identification of two mutations in PCDHGA4 and SLFN14 genes in an atrial septal defect family. Curr Med Sci, 2018,38(6):989-996.
doi: 10.1007/s11596-018-1974-2 |
[24] |
Lee NK, Choi HK, Yoo HJ, Shin J, Lee SY . RANKL- induced schlafen2 is a positive regulator of osteoclastogenesis. Cell Signal, 2008,20(12):2302-2308.
doi: 10.1016/j.cellsig.2008.08.019 |
[25] |
Horton MR, Powell JD . Quieting T cells with Slfn2. Nat Immunol, 2010,11(4):281-282.
doi: 10.1038/ni0410-281 |
[26] |
Companioni Nápoles O, Tsao AC, Sanz-Anquela JM, Sala N, Bonet C, Pardo ML, Ding L, Simo O, Saqui-Salces M, Blanco VP, Gonzalez CA, Merchant JL . SCHLAFEN 5 expression correlates with intestinal metaplasia that progresses to gastric cancer. J Gastroenterol, 2017,52(1):39-49.
doi: 10.1007/s00535-016-1202-4 |
[27] |
Kovalenko PL, Basson MD . Schlafen 12 expression modulates prostate cancer cell differentiation. J Surg Res, 2014,190(1):177-184.
doi: 10.1016/j.jss.2014.03.069 |
[28] |
Wu XY, Schnitzler GR, Gao GF, Diamond B, Baker AR, Kaplan B, Williamson K, Westlake L, Lorrey S, Lewis TA, Garvie CW, Lange M, Hayat S, Seidel H, Doench J, Cherniack AD, Kopitz C, Meyerson M, Greulich H . Mechanistic insights into cancer cell killing through interaction of phosphodiesterase 3A and schlafen family member 12. J Biol Chem, 2020,295(11):3431-3446.
doi: 10.1074/jbc.RA119.011191 |
[29] |
Katsoulidis E, Carayol N, Woodard J, Konieczna I, Majchrzak-Kita B, Jordan A, Sassano A, Eklund EA, Fish EN, Platanias LC . Role of Schlafen 2 (SLFN2) in the generation of interferon α-induced growth inhibitory responses. J Biol Chem, 2009,284(37):25051-25064.
doi: 10.1074/jbc.M109.030445 |
[30] |
Oh PS, Patel VB, Sanders MA, Kanwar SS, Yu Y, Nautiyal J, Patel BB, Majumdar AP . Schlafen-3 decreases cancer stem cell marker expression and autocrine/juxtacrine signaling in FOLFOX-resistant colon cancer cells. Am J Physiol Gastrointest Liver Physiol, 2011,301(2):G347-G355.
doi: 10.1152/ajpgi.00403.2010 |
[31] |
Barretina J, Caponigro G., Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, Jané- Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P, Shipway A, Engels IH, Cheng J, Yu GK, Yu J, Aspesi P, de Silva M, Jagtap K, Jones MD, Wang L, Hatton C, Palescandolo E, Gupta S, Mahan S, Sougnez C, Onofrio RC, Liefeld T, MacConaill L, Winckler W, Reich M, Li N, Mesirov JP, Gabriel SB, Getz G, Ardlie K, Chan V, Myer VE, Weber BL, Porter J, Warmuth M, Finan P, Harris JL, Meyerson M, Golub TR, Morrissey MP, Sellers WR, Schlegel R, Garraway LA. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 2012,483(7391):603-607.
doi: 10.1038/nature11003 |
[32] | Zoppoli G, Regairaz M, Leo E, Reinhold WC, Varma S, Ballestrero A, Doroshow JH, Pommier Y . Putative DNA/ RNA helicase Schlafen-11 (SLFN11) sensitizes cancer cells to DNA-damaging agents. Proc Natl Acad Sci USA, 2012,109(37):15030-15035. |
[33] |
Kaur S, Schwartz AL, Jordan DG, Soto-Pantoja DR, Kuo B, Elkahloun AG, Mathews GL, Thomas CJ, Ferrer M, Thomas A, Tang SW, Rajapakse VN, Pommier Y, Roberts DD . Identification of Schlafen-11 as a target of CD47 signaling that regulates sensitivity to ionizing radiation and topoisomerase inhibitors. Front Oncol, 2019,9:994.
doi: 10.3389/fonc.2019.00994 |
[34] | Marzi L, Szabova L, Gordon M, Weaver Ohler Z, Sharan SK, Beshiri ML, Etemadi M, Murai J, Kelly K, Pommier Y . The indenoisoquinoline TOP1 inhibitors selectively target homologous recombination-deficient and Schlafen 11- positive cancer cells and synergize with olaparib. Clin Cancer Res, 2019,25(20):6206-6216. |
[35] | Malone D, Lardelli RM, Li M, David M . Dephosphorylation activates the interferon-stimulated Schlafen family member 11 in the DNA damage response. J Biol Chem, 2019,294(40):14674-14685. |
[36] | Wang J, Zhou JG, Huang CF . Tructure of the PSA promoter and the mechanisms of its expression regulation. Hereditas(Beijing), 2004,26(5):739-744. |
王健, 周建光, 黄翠芬 . PSA启动子结构和表达调控研究进展. 遗传, 2004,26(5):739-744. | |
[37] |
Li DR, Chen J, Ai YW, Gu XQ, Li L, Che D, Jiang ZD, Li L, Chen S, Huang HW, Wang JW, Cai T, Cao Y, Qi XB, Wang XD. Estrogen-related hormones induce apoptosis by stabilizing schlafen-12 protein turnover. Mol Cell, 2019, 75(6): 1103-1116. e9.
doi: 10.1016/j.molcel.2019.06.040 |
[38] | Lin YZ, Sun LK, Zhu DT, Hu Z, Wang XF, Du C, Wang YH, Wang XJ, Zhou JH . Equine schlafen 11 restricts the production of equine infectious anemia virus via a codon usage-dependent mechanism. Virology, 2016,495:112-121. |
[39] | Valdez F, Salvador J, Palermo PM, Mohl JE, Hanley KA, Watts D, Llano M . Schlafen 11 restricts flavivirus replication. J Virol, 2019. 93(15):e00140-19. |
[40] | Kane M, Zang TM, Rihn SJ, Zhang F, Kueck T, Alim M, Schoggins J, Rice CM, Wilson SJ, Bieniasz PD . Identification of interferon-stimulated genes with antiretroviral activity. Cell Host Microbe, 2016,20(3):392-405. |
[41] | Seong RK, Seo SW, Kim JA, Fletcher SJ, Morgan NV, Kumar M, Choi YK, Shin OS . Schlafen 14 (SLFN14) is a novel antiviral factor involved in the control of viral replication. Immunobiology, 2017,222(11):979-988. |
[1] | 孙清玙, 周阳, 杜丽娟, 张梦珂, 王家乐, 任媛媛, 刘芳. 巨噬细胞相关基因与非小细胞肺癌预后和肿瘤微环境的分析[J]. 遗传, 2023, 45(8): 684-699. |
[2] | 严程浩, 白韦钰, 张智猛, 沈俊岭, 王友军, 孙建伟. STIM1在肿瘤发生及转移中的研究进展[J]. 遗传, 2023, 45(5): 395-408. |
[3] | 马春辉, 胡海旭, 张丽娟, 刘毅, 刘天懿. 用于循环肿瘤细胞定量分析的CK19数字PCR检测方法的建立及性能验证[J]. 遗传, 2023, 45(3): 250-260. |
[4] | 常栋, 刘享享, 刘睿, 孙建伟. FSCN1在乳腺癌发生发展中的作用及其调控机制[J]. 遗传, 2023, 45(2): 115-127. |
[5] | 郝庆刚, 孙凤桂, 严程浩, 孙建伟. MT1-MMP在肿瘤转移中的研究进展[J]. 遗传, 2022, 44(9): 745-755. |
[6] | 刘文兵, 刘丹, 闫进, 刘欣, 王前飞. 重症新型冠状病毒肺炎患者遗传易感性研究进展[J]. 遗传, 2022, 44(8): 672-681. |
[7] | 张爽, 郭珊珊, 王汝雯, 马仁燕, 吴显敏, 陈佩杰, 王茹. PARK基因家族在骨骼肌肌病中的研究进展[J]. 遗传, 2022, 44(7): 545-555. |
[8] | 赵岩, 王晨鑫, 杨天明, 李春爽, 张丽宏, 杜冬妮, 王若曦, 王静, 魏民, 巴雪青. DNA氧化损伤8-羟鸟嘌呤与肿瘤的发生发展[J]. 遗传, 2022, 44(6): 466-477. |
[9] | 陈友红, 杨文豪, 倪超. 利用食管类器官研究c-Myc在食管癌发生中的作用[J]. 遗传, 2021, 43(6): 601-614. |
[10] | 寇艳妮, 岑山, 李晓宇. LINE-1在肿瘤早期诊断和治疗中的研究与应用[J]. 遗传, 2021, 43(6): 571-579. |
[11] | 王卓, 申笑涵, 施奇惠. 单细胞基因组测序技术新进展及其在生物医学中的应用[J]. 遗传, 2021, 43(2): 108-117. |
[12] | 张恩权, 蔡伟聪, 李桂玲, 李健, 刘静雯. 赫氏颗石藻(Emiliania huxleyi)响应病毒感染的microRNA转录组分析[J]. 遗传, 2021, 43(11): 1088-1100. |
[13] | 刘倩, 李春燕. 增强子的鉴定及其在肿瘤研究中的应用[J]. 遗传, 2020, 42(9): 817-831. |
[14] | 谢春梅, 武海萍, 马雪萍, 周国华. 用于临床新型冠状病毒核酸检测的分子诊断新技术[J]. 遗传, 2020, 42(9): 870-881. |
[15] | 赵利楠, 王娜, 杨国良, 苏现斌, 韩泽广. 基于单细胞靶向测序探究基因碱基突变的方法[J]. 遗传, 2020, 42(7): 703-712. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: