[1] Carpenter J, Felsot A, Goode T, Hamming M, Onstad D, Sankula S. Comparative environmental impacts of bio-technology-derived and traditional soybean, corn, and cotton crops. Council for Agricultural Science and Tech-nology, Ames, IA, 2002: 15-50.[2] Yang K, Jeong N, Moon JK, Lee YH, Lee SH, Kim HM, Hwang CH, Back K, Palmer RG, Jeong SC. Genetic analysis of genes controlling natural variation of seed coat and flower colors in soybean. J Hered, 2010, 101(6): 757-768.[3] Lepiniec L, Debeaujon I, Routaboul J M, Baudry A, Pourcel L, Nesi N, Caboche M. Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol, 2006, 57: 405-430.[4] Holton TA, Cornish EC. Genetics and biochemistry of an-thocyanin biosynthesis. Plant Cell, 1995, 7(7): 1071-1083.[5] 张玲. 水稻紫黑色颖壳Pbh基因的遗传分析与克隆[学位论文]. 北京: 中国农业科学院, 2011.[6] 沈忠伟, 许昱, 夏犇, 李建粤. 植物类黄酮次生代谢生物合成相关转录因子及其在基因工程中的应用.分 子植物育种, 2008, 6(3): 542-548.[7] Xu P, Hu TT, Yang YJ, Wu XH, Wang BG, Liu YH, Qin DH, Ehlers J, Close T, Lu ZF, Li GJ. Mapping genes gov-erning flower and seedcoat color in asparagus bean (Vigna unguiculata ssp. sesquipedalis) based on single nucleotide polymorphism and simple sequence repeat markers. Hort Sci, 2011, 46(8): 1102-110.[8] Palmer RG, Pfeiffer TW, Buss GR, Kilen TC. Qualitative genetics in soybeans: improvement, production, and uses. 3rd ed. Madison (WI): ASA, CSSA, and SSSA, 2004: 137-214.[9] Bernard RL, Weiss MG. Qualitative genetics, in soybean: improvement, production and uses. Madison, WI: American Society of Agronomy, 1973, 1: 117-149.[10] Palmer RG, Kilen TC. Qualitative genetics and cytogenetics. In: Soybeans: improvement, production and uses. Madi-son, WI: American Society of Agronomy, 1987, 2: 135-209.[11] Nicholas CD, Lindstrom JT, Vodkin LO. Variation of proline rich cell wall proteins in soybean lines with antho-cyanin mutations. Plant Mol Biol, 1993, 21(1): 145-156.[12] Todd JJ, Vodkin LO. Duplications that suppress and dele-tions that restore expression from a chalcone synthase multigene family. Plant Cell, 1996, 8(4): 687-699.[13] Clough SJ, Tuteja JH, Li M, Marek LF, Shoemaker RC, Vodkin LO. Features of a 103-kb gene- rich region in soy-bean include an inverted perfect repeat cluster of CHS genes comprising the I locus. Genome, 2004, 47(5): 819-831.[14] Tuteja JH, Clough SJ, Chan W C, Vodkin LO. Tissue-specific gene silencing mediated by a naturally occurring chalcone synthase gene cluster in Glycine max. Plant Cell, 2004, 16(4): 819-835.[15] Zabala G, Vodkin L. Cloning of the pleiotropic T locus in soybean and two recessive alleles that differentially affect structure and expression of the encoded flavonoid 3’ hy- droxylase. Genetics, 2003, 163(1): 295-309.[16] Toda K, Yang DJ, Yamanaka N, Watanabe S, Harada K, Takahashi R. A single-base deletion in soybean flavonoid 3’-hydroxylase gene is associated with gray pubescence color. Plant Mol Biol, 2002, 50(2): 187-196.[17] Buzzetl RI, Buttery BR, MacTavish DC. Biochemical ge-netics of black pigmentation of soybean seed. J He-red, 1987, 78(1): 53-54.[18] Todd JJ, Vodkin LO. Pigmented soybean (Glycine max) seed coats accumulate proanthocyanidins during development. Plant Physiol, 1993, 102(2): 663-670.[19] Lee JH, Kang NS, Shin SO, Shin SH, Lim SG, Suh DY, Baek IY, Park KY, Ha TJ. Characterization of anthocyanins in the black soybean (Glycine max L.) by HPLC- DAD-ESI/MS analysis. Food Chem, 2009, 112(1): 226-231.[20] Senda M, Kurauchi T, Kasai A, Ohnishi S. Suppressive mechanism of seed coat pigmentation in yellow soybean. Breed Sci, 2012, 61(5): 523-530.[21] Wang CS, Todd JJ, Vodkin LO. Chalcone synthase mRNA and activity are reduced in yellow soybean seed coats with dominant I alleles. Plant Physiol, 1994, 105(2): 739-748.[22] Akada S, Dube SK. Organization of soybean chalcone synthase gene clusters and characterization of a new member of the family. Plant Mol Biol, 1995, 29(2): 189-199.[23] Shimizu T, Akada S, Senda M, Ishikawa R, Harada T, Niizeki M, Dube SK. Enhanced expression and differential inducibility of soybean chalcone synthase gene by supplemental UV-B in dark-grown seedlings. Plant Mol Biol, 1999, 39(4): 785-795.[24] Senda M, Jumonji A, Yumoto S, Ishikawa R, Harada T, Niizeki M, Akada S. Analysis of the duplicated CHS1 gene related to the suppression of the seed coat pigmentation in yellow soybeans. Theor Appl Genet, 2002, 104(6-7): 1086-1091.[25] Matsumura H, Watanabe S, Harada K, Senda M, Akada S, Kawasaki S, Dubouzet EG, Minaka N, Takahashi R. Mo-lecular linkage mapping and phylogeny of the chalcone synthase multigene family in soybean. Theor Appl Genet, 2005, 110(7): 1203-1209.[26] Tuteja JH, Vodkin LO. Structural features of the endogenous CHS silencing and target loci in the soybean genome. Crop Sci, 2008, 48(S1): 49-69.[27] Kasai A, Kasai K, Yumoto S, Senda M. Structural features of GmIRCHS, candidate of the I gene inhibiting seed coat pigmentation in soybean: implications for in-ducing endogenous RNA silencing of chalcone synthase genes. Plant Mol Biol, 2007, 64(4): 467-479.[28] Senda M, Masuta C, Ohnishi S, Goto K, Kasai A, Sano T, Hong JS, MacFarlane S. Patterning of virus-infected Glycine max seed coat is associated with suppression of endogenous silencing of chalcone synthase genes. Plant Cell, 2004, 16(4): 807-818.[29] Tuteja JH, Zabala G, Varala K, Hudson M, Vodkin LO. Endogenous, tissue-specific short interfering RNAs si-lence the chalcone synthase gene family in Glycine max seed coats. Plant Cell, 2009, 21(10): 3063-3077.[30] Kurauchi T, Kasai A, Tougou M, Senda M. Endogenous RNA interference of chalcone synthase genes in soybean: Formation of double-stranded RNA of GmIRCHS transcripts and structure of the 5′ and 3′ ends of short inter-fering RNAs. Plant Physiol, 2011, 168(11): 1264- 1270.[31] Koes RE, Spelt CE, Moi JNM. The chalcone synthase multigene family of Petunia hybrida (V30): Differential, light-regulated expression during flower devel-opment and UV light induction. Plant Mol Biol, 1989, 12(2): 213-225.[32] Dooner HK. Coordinate genetic regulation of flavonoid biosynthetic enzymes in maize. Mol Gen Genet, 1983, 189(1): 136-141.[33] Wienand U, Weydemann U, Niesbach-Klösgen U, Peter-son PA, Saedler H. Molecular cloning of the C2 locus of Zea mays, the gene coding for chalcone synthase. Mol Gen Genet, 1986, 203(2): 202-207.[34] Schuler MA. Plant cytochrome P450 monooxygenases. Crit Rev Plant Sci, 1996, 15(3): 235-284.[35] Chapple C. Molecular-genetic analysis of plant cytochrome p450-dependent monooxygenases. Annu Rev Plant Physiol, 1998: 49: 311-343.[36] Iwashina T, Benitez ER, Takahashi R. Analysis of flavon-oids in pubescence of soybean near-isogenic lines for pu-bescence color loci. J Hered, 2006, 97(5): 438-444.[37] Sunada K, Ito T. Soybean grain quality as affected by low temperature treatments in plants (color of hilum, seed coat cracking). Hokkaido Branch, Crop Sci Soc Jpn/Hokkaido Branch, Jpn Soc Breed, 1982, 22: 34-35 (in Japanese)[38] Takahashi R. Association of soybean genes I and T with low-temperature induced seed coat deterioration. Crop Sci, 1997, 37(6): 1755-1759.[39] Takahashi R, Asanuma S. Association of T gene with chilling tolerance in soybean. Crop Sci, 1996, 36(3): 559-562.[40] Lark KG, Weisemann JM, Matthews BF, Palmer R, Chase K, Macalma T. A genetic map of soybean (Glycine max L.) using an intraspecific cross of two cultivars: 'Minosy' and 'Noir 1'. Theor Appl Genet, 1993, 86(8): 901-906.[41] Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109(1): 122- 128.[42] The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408(6814): 796-815.[43] Lee Y, Yoon HR, Paik YS, Liu JR, Chung WI, Choi G. Reciprocal regulation of Arabidopsis UGT78D2 and BANYULS is critical for regulation of the metabolic flux of anthocyanidins to condensed tannins in developing seed coats. J Plant Biol, 2005, 48(4): 356-370.[44] Gillman JD, Tetlow A, Lee JD, Shannon JG, Bilyeu K. Loss-of-function mutations affecting a specific Glycine max R2R3 MYB transcription factor result in brown hilum and brown seed coats. BMC Plant Biol, 2011, 11: 155.[45] Kovinich N, Saleem A, Arnason JT, Miki B. Combined analysis of transcriptome and metabolite data reveals ex-tensive differences between black and brown nearly-isogenic soybean (Glycine max) seed coats ena-bling the identification of pigment isogenes. BMC Genomics, 2011, 12: 381.[46] Zabala G, Vodkin LO. A rearrangement resulting in small tandem repeats in the F3'5'H gene of white flower genotypes is associated with the soybean locus. Crop Sci, 2007, 47(S2): S113-S124.[47] Xie DY, Sharma SB, Paiva NL, Ferreira D, Dixon RA. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science, 2003, 299(5605): 396- 399.[48] Kovinich N, Saleem A, Rintoul TL, Brown DCW, Arnason JT, Miki B. Coloring genetically modified soybean grains with anthocyanins by suppression of the proanthocyanidin genes ANR1 and ANR2. Transgenic Res, 2011, doi: 10.1007/s11248-011-9566-y.[49] Kovinich N, Saleem A, Arnason JT, Miki B. Functional characterization of a UDP-glucose: flavonoid 3-O-glucosyltransferase from the seed coat of black soybean (Glycine max (L.) Merr.). Phytochemistry, 2010, 71(11-12): 1253-1263.[50] 邱丽娟, 郭勇, 黎裕, 王晓波, 周国安, 刘章雄, 周时荣, 李新海, 马有志, 王建康, 万建民. 中国作 物新基因发掘: 现状、挑战与展望. 作物学报, 2011, 37(1): 1-17.[51] Schmutz J, Cannon SB, Schlueter J, Ma JX, Mitros T, Nelson W, Hyten DL, Song QJ, Thelen JJ, Cheng JL, Xu D, Hellsten U, May GD,Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu SQ, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du JC, Tian ZX, Zhu LC, Gill N, Joshi T, Libault M, Sethuraman1 A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA. Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463(7278): 178-183.[52] Kim MY, Lee S, Van K, Kim TH, Jeong SC, Choi IY, Kim DS, Lee YS, Park D, Ma JX, Kim WY, Kim BC, Park S, Lee KA, Kim DH, Kim KH, Shin JH, Jang YE, Kim KD, Liu WX, Chaisan T, Kang YJ, Lee YH, Kim KH, Moon JK, Schmutz J, Jackson SA, Bhak J, Lee SH. Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proc Natl Acad Sci USA, 2010, 107(51): 22032-22037.[53] Lam HM, Xu X, Liu X, Chen WB, Yang GH, Wong FL, Li MW, He WM, Qin N, Wang B, Li J, Jian M , Wang J, Shao GH, Wang J, Sun SS, Zhang GY. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet, 2010, 42(12): 1053-1059.[54] Huang XH, Zhao Y, Wei XH, Li CY, Wang AH, Zhao Q, Li WJ, Guo YL, Deng LW, Zhu CR, Fan DL, Lu YQ, Weng QJ, Liu KY, Zhou TY, Jing YF, Si LZ, Dong GJ, Huang T, Lu TT, Feng Q, Qian Q, Li JY, Han B. Genome- wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet, 2012, 44(1): 32-39.[55] Cao AZ, Xing LP, Wang XY, Yang XM, Wang W, Sun YL, Qian C, Ni JL, Chen YP, Liu DJ, Wang X, Chen PD. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA, 2011, 108(19): 7727-7732. |