[1] 曾宪坤. 磷的农业化学 (Ⅱ). 磷肥与复肥, 1999, 14(2): 63-69. [2] 尹逊霄, 华珞, 张振贤, 滑丽萍, 高娟. 土壤中磷素的有效性及其循环转化机制研究. 首都师范大学学报(自然科学版), 2005, 26(3): 95-101. [3] Wang XR, Wang YX, Tian J, Lim BL, Yan XL, Liao H. Overexpressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiol , 2009, 151(1): 233-240. [4] Yan XL, Wu P, Ling HQ, Xu GH, Xu FS, Zhang QF. Plant nutriomics in China: an overview. Ann Bot , 2006, 98(3): 473-482. [5] 方陵生. 磷肥过度使用之警示. 世界科学, 2010, (11): 6, 5. [6] Behrendt H, Boekhold A. Phosphorus saturation in soils and ground waters. Land Degrad Dev , 1993, 4(4): 233-243. [7] Oelkers EH, Valsami-Jones E. Phosphate Mineral Reactivity and Global Sustainability. Elements , 2008, 4(2): 83-87. [8] Mihelcic JR, Fry LM, Shaw R. Global potential of phosphorus recovery from human urine and feces. Chemosphere , 2011, 84(6): 832-839. [9] 李喜焕, 常文锁, 张彩英. 中国大豆磷素营养及磷高效品种筛选最新进展. 大豆科学, 2011, 30(2): 322-327. [10] 任海红, 刘学义, 李贵全. 大豆耐低磷胁迫研究进展. 分子植物育种, 2008, 6(2): 316-322. [11] 丁洪, 李生秀, 郭庆元, 张学江, 徐巧珍. 酸性磷酸酶活性与大豆耐低磷能力的相关研究. 植物营养与肥料学报, 1997, 3(2): 123-128. [12] 徐青萍, 罗超云, 廖红, 严小龙, 年海. 大豆不同品种对磷胁迫反应的研究. 大豆科学, 2003, 22(2): 108-114. [13] Wang LD, Liao H, Yan XL, Zhuang BC, Dong YS. Genetic variability for root hair traits as related to phosphorus status in soybean. Plant Soil , 2004, 261(1-2): 77-84. [14] Li YD, Wang YJ, Tong YP, Gao JG, Zhang JS, Chen SY. QTL mapping of phosphorus deficiency tolerance in soybean ( Glycine max L. Merr.). Euphytica , 2005, 142(1-2): 137-142. [15] 耿雷跃, 崔士友, 张丹, 邢邯, 盖钧镒, 喻德跃. 大豆磷效率QTL定位及互作分析. 大豆科学, 2007, 26(4): 460-466. [16] 崔世友, 耿雷跃, 孟庆长, 喻德跃. 大豆苗期耐低磷性及其QTL定位. 作物学报, 2007, 33(3): 378-383. [17] Zhang D, Cheng H, Geng LY, Kan GZ, Cui SY, Meng QC, Gai JY, Yu DY. Detection of quantitative trait loci for phosphorus deficiency tolerance at soybean seedling stage. Euphytica , 2009, 167(3): 313-322. [18] Mengel K, Kirkby EA, Kosegarten H, Appel T. Principles of Plant Nutrition. International Potash. Institute, Berne, Switzerland: Kluwer Academic Publishers, 2001. [19] Zhang D, Liu C, Cheng H, Kan G, Cui S, Meng Q, Gai J, Yu D. Quantitative trait loci associated with soybean tolerance to low phosphorus stress based on flower and pod abscission. Plant Breeding , 2010, 129(3): 243-249. [20] Zhang D, Song H, Cheng H, Hao D, Wang H, Kan G, Jin H, Yu D. The Acid Phosphatase-Encoding Gene GmACP1 Contributes to Soybean Tolerance to Low-Phosphorus Stress. PLoS Genet , 2014, 10(1): e1004061. [21] Liang Q, Cheng XH, Mei MT, Yan XL, Liao H. QTL analysis of root traits as related to phosphorus efficiency in soybean. Ann Bot , 2010, 106(1): 223-234. [22] King KE, Lauter N, Lin SF, Scott MP, Shoemaker RC. Evaluation and QTL mapping of phosphorus concentration in soybean seed. Euphytica , 2013, 189(2): 261-269. [23] Song HN, Yin ZT, Chao MN, Ning LH, Zhang D, Yu DY. Functional properties and expression quantitative trait loci for phosphate transporter GmPT1 in soybean. Plant , Cell Environ , 2014, 37(2): 462-472. [24] Peters JL, Cnudde F, Gerats T. Forward genetics and map-based cloning approaches. Trends Plant Sci , 2003, 8(10): 484-491. [25] Gamuyao R, Chin J H, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S. The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature , 2012, 488(7412): 535-539. [26] 李子银, 陈受宜. 水稻抗病基因同源序列的克隆、 定位及其表达. 科学通报, 1999, 44(7): 727-733. [27] Li J, Hegeman CE, Hanlon RW, Lacy GH, Denbow DM, Grabau EA. Secretion of active recombinant phytase from soybean cell-suspension cultures. Plant Physiol , 1997, 114(3): 1103-1111. [28] Li GL, Yang SH, Li MG, Qiao YK, Wang JH. Functional analysis of an Aspergillus ficuum phytase gene in Saccharomyces cerevisiae and its root-specific, secretory expression in transgenic soybean plants. Biotechnol Lett , 2009, 31(8): 1297-1303. [29] Gillman JD, Pantalone VR, Bilyeu K. The low |