[1] Ellaiah P, Adinarayana K, Chand GM, Subramanyam GS, Srinivasulu B. Strain improvement studies for cepha-losporin C production by Cephalosporium acremonium. Pharmazie, 2002, 57(7): 489-490.[2] Ellaiah P, Kumar JP, Saisha V, Sumitra JJ, Vaishali P. Strain improvement studies on production of cepha-losporin C from Acremonium chrysogenum ATCC 48272. Hindustan Antibiot Bull, 2003, 45-46(1-4): 11-15.[3] Lee MS, Lim JS, Kim CH, Oh KK, Yang DR, Kim SW. Enhancement of cephalosporin C production by cultiva-tion of Cephalosporium acremonium M25 using a mixture of inocula. Lett Appl Microbiol, 2001, 32(6): 402-406.[4] Gutiérrez S, Díez B, Montenegro E, Martin JF. Characterization of the Cephalosporium acremonium pcbAB gene encoding alpha-aminoadipyl-cysteinyl-valine synthetase, a large multidomain peptide synthetase: linkage to the pcbC gene as a cluster of early cephalosporin biosynthetic genes and evidence of multiple functional domains. J Bacteriol, 1991, 173(7): 2354-2365.[5] Martín JF, Ullán RV, Casqueiro J. Novel genes involved in cephalosporin biosynthesis: the three-component isopeni-cillin N epimerase system. Adv Biochem Eng Biotechnol, 2004, 88: 91-109.[6] Gutiérrez S, Velasco J, Fernandez FJ, Martin JF. The cefG gene of Cephalosporium acremonium is linked to the cefEF gene and encodes a deacetyl-cephalosporin C acetyl-transferase closely related to homoserine O-acetyltransferase. J Bacteriol, 1992, 174(9): 3056-3064.[7] Lejon S, Ellis J, Valegard K. The last step in cephalosporin C formation revealed: crystal structures of deacetylcepha-losporin C acetyltransferase from Acremonium chrysogenum in complexes with reaction intermediates. J Mol Biol, 2008, 377(3): 935-944.[8] Brakhage AA, Thön M, Spröte P, Scharf DH, Al-Abdallah Q, Wolke SM, Hortschansky P. Aspects on evolution of fungal β-lactam biosynthesis gene clusters and recruitment of transacting factors. Phytochemistry, 2009, 70(15-16): 1801-1811.[9] Dreyer J, Eichhorn H, Friedlin E, Kürnsteiner H, Kück U. A homologue of the Aspergillus velvet gene regulates both cephalosporin C biosynthesis and hyphal fragmentation in Acremonium chrysogenum. Appl Environ Microbiol, 2007, 73(10): 3412-3422.[10] Ullán RV, Teijeira F, Guerra SM, Vaca I, Martín JF. Characterization of a novel peroxisome membrane protein essential for conversion of isopenicillin N into cepha-losporin C. Biochem J, 2010, 432(2): 227-236.[11] Teijeira F, Ullán RV, Fernández-Lafuente R, Martín JF. CefR modulates transporters of β-lactam intermediates preventing the loss of penicillins to the broth and increases cephalosporin production in Acremonium chrysogenum. Metab Eng, 2011, doi:10.1016/j.ymben.2011.06.004.[12] Teijeira F, Ullán RV, Guerra SM, García-Estrada C, Vaca I, Martín JF. The transporter CefM involved in translocation of biosynthetic intermediates is essential for cephalosporin production. Biochem J, 2009, 418(1): 113-124.[13] Kück U, Hoff B. New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol, 2010, 86(1): 51-62.[14] Meyer V. Genetic engineering of filamentous fungiprogress, obstacles and future trends. Biotechnol Adv, 2008, 26(2): 177-185.[15] Skatrud PL, Queener SW, Carr LG, Fisher DL. Efficient integrative transformation of Cephalosporium acremonium. Curr Genet, 1987, 12(5): 337-348.[16] Xu W, Zhu CB, Zhu BQ. An efficient and stable method for the transformation of heterogeneous genes into Cephalosporium acremonium mediated by Agrobacterium tumefaciens. J Microbiol Biotechnol, 2005, 15(4): 683-688.[17] 袁宁, 胡又佳, 朱春宝 朱宝泉. 透明颤菌血红蛋白的DNA改组研究. 中国生物工程杂志, 2006, 26(11): 14-19.[18] 徐威, 朱春宝, 朱宝泉 姚新生. 丝状真菌顶头孢霉染色体DNA的提取. 沈阳药科大学学报, 2004, 21(3): 226-229.[19] 张丕燕, 朱春宝, 朱宝泉 赵文杰. 一个从顶头孢霉中筛选具有启动子功能的DNA片段的简便方法. 微生物学通报, 2004, 31(3): 97-100.[20] 张丕燕, 朱春宝 朱宝泉. 顶头孢霉pcbAB-pcbC双向启动子区域的克隆与应用. 微生物学报, 2004, 44(2): 255-257.[21] 陈丹, 袁宁, 胡又佳, 朱春宝 赵文杰, 朱宝泉. 顶头孢霉乙酰转移酶基因的克隆、表达和活性研究. 中国抗生素杂志, 2006, 31(7): 395-399.[22] 陈丹, 胡又佳, 朱春宝 朱宝泉. 顶头孢霉乙酰转移酶的可溶性表达优化和酶动力学. 中国医药工业杂志, 2007, 38(9): 625-628.[23] Nijland JG, Kovalchuk A, van den Berg MA, Bovenberg RAL, Driessen AJM. Expression of the transporter en-coded by the cefT gene of Acremonium chrysogenum increases cephalosporin production in Penicillium chrysogenum. Fungal Genet Biol, 2008, 45(10): 1415-1421.[24] Lin YH, Li YF, Huang MC, Tsai YC. Intracellular expression of Vitreoscilla hemoglobin in Aspergillus terreus to alleviate the effect of a short break in aeration during culture. Biotechnol Lett, 2004, 26(13): 1067-1072.[25] DeModena JA, Gutiérrez S, Velasco J, Fernández FJ, Fachini RA, Galazzo JL, Hughes DE, Martin JF. The production of cephalosporin C by Acremonium chrysogenum is improved by the intracellular expression of a bacterial hemoglobin. Bio/Technology, 1993, 11(8): 926-929.[26] Skatrud PL, Tietz AJ, Ingolia TD, Cantwell CA, Fisher DL, Chapman JL, Queener SW. Use of recombinant DNA to improve production of cephalosporin C by Cephalosporium acremonium. Bio/Technology, 1989, 7(5): 477-485.[27] Gutiérrez S, Velasco J, Marcos AT, Fernández FJ, Fierro F, Barredo JL, Díez B, Martín JF. Expression of the cefG gene is limiting for cephalosporin biosynthesis in Acremonium chrysogenum. Appl Microbiol Biotechnol, 1997, 48(5): 606-614.[28] Ullán RV, Liu G, Casqueiro J, Gutiérrez S, Bañuelos O, Martín JF. The cefT gene of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production. Mol Genet Genomics, 2002, 267(5): 673-683.[29] Velasco J, Luis Adrio J, Ángel Moreno M, Díez B, Soler G, Barredo JL. Environmentally safe production of 7-aminodeacetoxycephalosporanic acid (7-ADCA) using recombinant strains of Acremonium chrysogenum. Nat Biotechnol, 2000, 18(8): 857-861.[30] Isogai T, Fukagawa M, Aramori I, Iwami M, Kojo H, Ono T, Ueda Y, Kohsaka M, Imanaka H. Construction of a 7-aminocephalosporanic acid (7ACA) biosynthetic operon and direct production of 7ACA in Acremonium chrysogenum. Biotechnology (N Y), 1991, 9(2): 188-191.[31] Janus D, Hoff B, Hofmann E, Kück U. An efficient fungal RNA-silencing system using the DsRed reporter gene. Appl Environ Microbiol, 2007, 73(3): 962-970.[32] Ullán RV, Godio RP, Teijeira F, Vaca I, García-Estrada C, Feltrer R, Kosalkova K, Martín JF. RNA-silencing in Penicillium chrysogenum and Acremonium chrysogenum: validation studies using β-lactam genes expression. J Microbiol Methods, 2008, 75(2): 209-218.[33] Vaca I, Casqueiro J, Ullán RV, Rumbero Á, Chávez R, Martín JF. A preparative method for the purification of isopenicillin N from genetically blocked Acremonium chrysogenum strain TD189: studies on the degradation kinet-ics and storage conditions. J Antibiot, 2011, 64(6): 447-451.[34] Liu Y, Gong GH, Xie LP, Yuan N, Zhu CB, Zhu BQ, Hu YJ. Improvement of cephalosporin C production by recombinant DNA integration in Acremonium chrysogenum. Mol Biotechnol, 2010, 44(2): 101-109.[35] 龚桂花, 刘艳, 胡又佳, 朱春宝 朱宝泉. RNAi技术降低头孢菌素C工业生产菌株中cefG基因的转录. 生物技术通报, 2010, (10): 193-197.[36] Conlon HD, Baqai J, Baker K, Shen YQ, Wong BL, Noiles R, Rausch CW. Two-step immobilized enzyme conversion of cephalosporin C to 7-aminocephalosporanic acid. Biotechnol Bioeng, 1995. 46(6): 510-513.[37] Sonawane VC. Enzymatic modifications of cephalosporins by cephalosporin acylase and other enzymes. Crit Rev Biotechnol, 2006, 26(2): 95-120.[38] 刘艳, 龚桂花, 胡又佳, 朱春宝 朱宝泉. 头孢菌素C酰基转移酶在顶头孢霉中的表达. 中国医药工业杂志, 2009, 40(12): 902-906.[39] Liu Y, Gong GH, Zhu CB, Zhu BQ, Hu YJ. Environmentally safe production of 7-ACA by recombinant Acremonium chrysogenum. Curr Microbiol, 2010, 61(6): 609-614.[40] Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WPC, del Cardayre SB. Genome shuffling leads to rapid pheno-typic improvement in bacteria. Nature, 2002, 415(6872): 644-646.[42] Cheng Y, Song X, Qin Y, Qu Y. Genome shuffling improves production of cellulase by Penicillium decumbens JU-A10. J Appl Microbiol, 2009, 107(6): 1837-1846.[43] Schmitt EK, Hoff B, Kück U. Regulation of cephalosporin biosynthesis. Adv Biochem Eng Biotechnol, 2004, 88: 1-43.[44] Jones MG. The first filamentous fungal genome sequences: Aspergillus leads the way for essential everyday resources or dusty museum specimens? Microbiology, 2007, 153(Pt 1): 1-6.[45] Thykaer J, Nielsen J. Metabolic engineering of β-lactam production. Metab Eng, 2003, 5(1): 56-69.[46] Manteca A, Sanchez J, Jung HR, Schwämmle V, Jensen ON. Quantitative proteomics analysis of Streptomyces coelicolor development demonstrates that onset of secondary metabolism coincides with hypha differentiation. Mol Cell Proteomics, 2010, 9(7): 1423-1436.[47] Jami MS, Barreiro C, García-Estrada C, Martín JF. Proteome analysis of the penicillin producer Penicillium chrysogenum: characterization of protein changes during the industrial strain improvement. Mol Cell Proteomics, 2010, 9(6): 1182-1198. |