遗传 ›› 2024, Vol. 46 ›› Issue (1): 3-17.doi: 10.16288/j.yczz.23-300
收稿日期:
2023-12-01
修回日期:
2023-12-29
出版日期:
2024-01-20
发布日期:
2024-01-01
通讯作者:
赵洪,薛勇彪
E-mail:zhhong@genetics.ac.cn;ybxue@genetics.ac.cn
作者简介:
薛勇彪研究员主要从事植物分子遗传学领域研究,在植物自交不亲和性、重要基因功能解析和基因组分析等领域做出了重要科学发现,发表SCI论文150余篇,2020~2022年获爱思唯尔生物学中国高被引学者,2007年获国家自然科学二等奖2项,分别为“显花植物自交不亲和性分子机理”和“水稻第四号染色体测序及功能分析”,曾任中国科学院遗传与发育生物学研究所和北京基因组研究所(国家生物信息中心)所长、第十届中国遗传学会理事长、水稻功能基因组973项目和中国科学院A类先导专项首席科学家,Journal of Genetics and Genomics (JGG)荣誉主编、Plant Reproduction、Plants People Planet (PPP)、Biology Open、H1(F1000)等杂志编委或顾问。
基金资助:
Received:
2023-12-01
Revised:
2023-12-29
Published:
2024-01-20
Online:
2024-01-01
Contact:
Hong Zhao,Yongbiao Xue
E-mail:zhhong@genetics.ac.cn;ybxue@genetics.ac.cn
Supported by:
摘要:
自交不亲和性(self-incompatibility, SI)是雌雄同花植物广泛采取的一种种内促进异交机制,通常由一个多态且复等位的S位点控制。目前共发现6种不同分子机制的SI,包括由花柱S因子S-RNase和花粉S因子SLFs控制且常见于车前科、茄科、蔷薇科和芸香科的I类、SRK和SCR控制的十字花科II类、PrsS和PrpS控制的罂粟科III类、CYP-GLO2-KFB-CCM-PUM控制的报春花科IV类、TsSPH1-TsYUC6-TsBAHD控制的时钟花科V类及HPS10-S和DUF247I-S控制的禾本科VI类SI,其中I类SI为异己识别体系,而II、III和VI类均为自己识别系统。此外,近年来对其起源和演化机制研究也取得显著进展。其中,I类SI起源于真双子叶植物的最近共同祖先,II~V类则为丢失I类后分别进化产生的新机制,而单子叶禾本科特有的VI类SI则可能是在丢失古老I类SI后演化出的新系统。本文主要总结已报道SI的分子和演化机制,以期为显花植物SI的理论研究和育种应用提供参考和帮助。
赵洪, 薛勇彪. 显花植物自交不亲和性的分子与演化机制[J]. 遗传, 2024, 46(1): 3-17.
Hong Zhao, Yongbiao Xue. Molecular and evolutionary mechanisms of self-incompatibility in angiosperms[J]. Hereditas(Beijing), 2024, 46(1): 3-17.
[1] | de Nettancourt D. Incompatibility and incongruity in wild and cultivated plants. Berlin: Springer 2001. |
[2] | Franklin-Tong VE. Self-incompatibility in flowering plants. Berlin: Springer, 2008. |
[3] |
Takayama S, Isogai A. Self-incompatibility in plants. Annu Rev Plant Biol, 2005, 56: 467-489.
pmid: 15862104 |
[4] |
Zhang YJ, Zhao ZH, Xue YB. Roles of proteolysis in plant self-incompatibility. Annu Rev Plant Biol, 2009, 60: 21-42.
doi: 10.1146/annurev.arplant.043008.092108 pmid: 19575579 |
[5] |
Fujii S, Kubo K, Takayama S. Non-self- and self-recognition models in plant self-incompatibility. Nat Plants, 2016, 2(9): 16130.
doi: 10.1038/nplants.2016.130 pmid: 27595657 |
[6] |
Bedinger PA, Broz AK, Tovar-Mendez A, McClure B. Pollen-pistil interactions and their role in mate selection. Plant Physiol, 2017, 173(1): 79-90.
doi: 10.1104/pp.16.01286 pmid: 27899537 |
[7] |
Hayman D. The genetical control of incompatibility in Phalaris Coerulescens Desf. Aust J Biol Sci, 1956, 9(3): 321-331.
doi: 10.1071/BI9560321 |
[8] |
Lundqvist A. Self-incompatibility in rye. Hereditas, 1954, 40(3-4): 278-294.
doi: 10.1111/j.1601-5223.1954.tb02973.x |
[9] |
Yang B, Thorogood D, Armstead I, Barth S. How far are we from unravelling self-incompatibility in grasses? New Phytol, 2008, 178(4): 740-753.
doi: 10.1111/j.1469-8137.2008.02421.x pmid: 18373516 |
[10] |
Bala M, Rehana S, Singh MP. Self-incompatibility: a targeted, unexplored pre-fertilization barrier in flower crops of Asteraceae. J Plant Res, 2023, 136(5): 587-612.
doi: 10.1007/s10265-023-01480-6 |
[11] |
Zhao H, Zhang Y, Zhang H, Song YZ, Zhao F, Zhang YE, Zhu SH, Zhang HK, Zhou ZD, Guo H, Li MM, Li JH, Gao Q, Han QQ, Huang HQ, Copsey L, Li Q, Chen H, Coen E, Zhang YJ, Xue YB. Origin, loss, and regain of self-incompatibility in angiosperms. Plant Cell, 2022, 34(1): 579-596.
doi: 10.1093/plcell/koab266 |
[12] | Anderson MA, Cornish EC, Mau SL, Williams EG, Hoggart R, Atkinson AA, Bonig I, Grego B, Simpson R, Roche PJ, Haley JD, Penschow J, Niall HD, Tregear GW, Coghlan JP, Crawford RJ, Clarke A. Cloning of cDNA for a stylar glycoprotein associated with expression of self-incompatibility in Nicotiana alata. Nature, 1986, 321(6065): 38-44. |
[13] |
McClure BA, Haring V, Ebert PR, Anderson MA, Simpson RJ, Sakiyama F, Clarke AE. Style self- incompatibility gene products of Nicotiana alata are ribonucleases. Nature, 1989, 342(6252): 955-957.
doi: 10.1038/342955a0 |
[14] |
Lai Z, Ma WS, Han B, Liang LZ, Zhang YS, Hong GF, Xue YB. An F-box gene linked to the self- incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum. Plant Mol Biol, 2002, 50(1): 29-42.
doi: 10.1023/A:1016050018779 |
[15] |
Sijacic P, Wang X, Skirpan AL, Wang Y, Dowd PE, McCubbin AG, Huang SS, Kao TH. Identification of the pollen determinant of S-RNase-mediated self- incompatibility. Nature, 2004, 429(6989): 302-305.
doi: 10.1038/nature02523 |
[16] |
Qiao H, Wang F, Zhao L, Zhou JL, Lai Z, Zhang YS, Robbins TP, Xue YB. The F-box protein AhSLF-S2 controls the pollen function of S-RNase-based self- incompatibility. Plant Cell, 2004, 16(9): 2307-2322.
doi: 10.1105/tpc.104.024919 |
[17] |
Liang M, Yang W, Su SY, Fu LL, Yi HL, Chen CW, Deng XX, Chai LJ. Genome-wide identification and functional analysis of S-RNase involved in the self-incompatibility of Citrus. Mol Genet Genomics, 2017, 292(2): 325-341.
doi: 10.1007/s00438-016-1279-8 pmid: 27933381 |
[18] |
Schopfer CR, Nasrallah ME, Nasrallah JB. The male determinant of self-incompatibility in Brassica. Science, 1999, 286(5445): 1697-1700.
pmid: 10576728 |
[19] |
Takasaki T, Hatakeyama K, Suzuki G, Watanabe M, Isogai A, Hinata K. The S receptor kinase determines self-incompatibility in Brassica stigma. Nature, 2000, 403(6772): 913-916.
doi: 10.1038/35002628 |
[20] |
Foote HC, Ride JP, Franklin-Tong VE, Walker EA, Lawrence MJ, Franklin FC. Cloning and expression of a distinctive class of self-incompatibility (S) gene from Papaver rhoeas L. Proc Natl Acad Sci USA, 1994, 91(6): 2265-2269.
pmid: 8134385 |
[21] |
Wheeler MJ, de Graaf BHJ, Hadjiosif N, Perry RM, Poulter NS, Osman K, Vatovec S, Harper A, Franklin FCH, Franklin-Tong VE. Identification of the pollen self-incompatibility determinant in Papaver rhoeas. Nature, 2009, 459(7249): 992-995.
doi: 10.1038/nature08027 |
[22] |
Li J, Cocker JM, Wright J, Webster MA, McMullan M, Dyer S, Swarbreck D, Caccamo M, Oosterhout CV, Gilmartin PM. Genetic architecture and evolution of the S locus supergene in Primula vulgaris. Nat Plants, 2016, 2(12): 16188.
doi: 10.1038/nplants.2016.188 |
[23] |
Shore JS, Hamam HJ, Chafe PDJ, Labonne JDJ, Henning PM, McCubbin AG. The long and short of the S-locus in Turnera (Passifloraceae). New Phytol, 2019, 224(3): 1316-1329.
doi: 10.1111/nph.15970 pmid: 31144315 |
[24] |
Lian XP, Zhang SL, Huang GF, Huang LY, Zhang J, Hu FY. Confirmation of a gametophytic self-incompatibility in Oryza longistaminata. Front Plant Sci, 2021, 12: 576340.
doi: 10.3389/fpls.2021.576340 |
[25] |
Kakeda K, Ibuki T, Suzuki J, Tadano H, Kurita Y, Hanai Y, Kowyama Y. Molecular and genetic characterization of the S locus in Hordeum bulbosum L., a wild self-incompatible species related to cultivated barley. Mol Genet Genomics, 2008, 280(6): 509-519.
doi: 10.1007/s00438-008-0383-9 |
[26] |
Shinozuka H, Cogan NOI, Smith KF, Spangenberg GC, Forster JW. Fine-scale comparative genetic and physical mapping supports map-based cloning strategies for the self-incompatibility loci of perennial ryegrass (Lolium perenne L.). Plant Mol Biol, 2010, 72(3): 343-355.
doi: 10.1007/s11103-009-9574-y pmid: 19943086 |
[27] |
Manzanares C, Barth S, Thorogood D, Byrne SL, Yates S, Czaban A, Asp T, Yang BC, Studer B. A gene encoding a DUF247 domain protein cosegregates with the S self-incompatibility locus in perennial ryegrass. Mol Biol Evol, 2016, 33(4): 870-884.
doi: 10.1093/molbev/msv335 pmid: 26659250 |
[28] |
Rohner M, Manzanares C, Yates S, Thorogood D, Copetti D, Lübberstedt T, Asp T, Studer B. Fine-mapping and comparative genomic analysis reveal the gene composition at the S and Z self-incompatibility loci in grasses. Mol Biol Evol, 2023, 40(1): msac259.
doi: 10.1093/molbev/msac259 |
[29] | Herridge R, McCourt T, Jacobs JME, Mace P, Brownfield L, Macknight R. Identification of the genes at S and Z reveals the molecular basis and evolution of grass self-incompatibility. Front Plant Sci, 2022, 22: 1011299. |
[30] |
Chen JQ, Wang P, de Graaf BHJ, Zhang H, Jiao HJ, Tang C, Zhang S, Wu JY. Phosphatidic acid counteracts S-RNase signaling in pollen by stabilizing the actin cytoskeleton. Plant Cell, 2018, 30(5): 1023-1039.
doi: 10.1105/tpc.18.00021 |
[31] |
Gu ZY, Meng D, Yang Q, Yuan H, Wang AD, Li W, Chen QJ, Zhang Y, Wang DM, Li TZ. A CBL gene, MdCBL5, controls the calcium signal and influences pollen tube growth in apple. Tree Genet Genomes, 2015, 11: 27.
doi: 10.1007/s11295-015-0853-2 |
[32] |
Mcclure BA, Gray JE, Anderson MA, Clarke AE. Self-incompatibility in Nicotiana alata involves degradation of pollen rRNA. Nature, 1990, 347: 757-760.
doi: 10.1038/347757a0 |
[33] |
Qu HY, Guan YQ, Wang YZ, Zhang SL. PLC-mediated signaling pathway in pollen tubes regulates the gametophytic self-incompatibility of Pyrus species. Front Plant Sci, 2017, 8: 1164.
doi: 10.3389/fpls.2017.01164 |
[34] |
Yang Q, Meng D, Gu ZY, Li W, Chen QJ, Li Y, Yuan H, Yu J, Liu CS, Li TZ. Apple S-RNase interacts with an actin-binding protein, MdMVG, to reduce pollen tube growth by inhibiting its actin-severing activity at the early stage of self-pollination induction. Plant J, 2018, 95(1): 41-56.
doi: 10.1111/tpj.2018.95.issue-1 |
[35] | Tian HY, Zhang HK, Huang HQ, Zhang YE, Xue YB. Phase separation of S-RNase promotes self- incompatibility in Petunia hybrida. J Integr Plant Biol, 2023. |
[36] |
Oxley D, Munro SL, Craik DJ, Bacic A.Structure of N-glycans on the S3- and S6-allele stylar self- incompatibility ribonucleases of Nicotiana alata. Glycobiology, 1996, 6(6): 611-618.
pmid: 8922956 |
[37] |
Qi X, Luu DT, Yang Q, Maës O, Matton DP, Morse D, Cappadocia M. Genotype-dependent differences in S12-RNase expression lead to sporadic self-compatibility. Plant Mol Biol, 2001, 45(3): 295-305.
pmid: 11292075 |
[38] |
Liu BL, Morse D, Cappadocia M. Glycosylation of S-RNases may influence pollen rejection thresholds in Solanum chacoense. J Exp Bot, 2008, 59(3): 545-552.
doi: 10.1093/jxb/erm339 pmid: 18267942 |
[39] |
Torres-Rodríguez MD, Cruz-Zamora Y, Juárez-Díaz JA, Mooney B, McClure BA, Cruz-García F. NaTrxh is an essential protein for pollen rejection in Nicotiana by increasing S-RNase activity. Plant J, 2020, 103(4): 1304-1317.
doi: 10.1111/tpj.v103.4 |
[40] |
Qiao H, Wang HY, Zhao L, Zhou JL, Huang J, Zhang YS, Xue YB.The F-box protein AhSLF-S2 physically interacts with S-RNases that may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum. Plant Cell, 2004, 16(3): 582-595.
doi: 10.1105/tpc.017673 |
[41] |
Huang J, Zhao L, Yang QY, Xue YB. AhSSK1, a novel SKP1-like protein that interacts with the S-locus F-box protein SLF. Plant J, 2006, 46(5): 780-793.
pmid: 16709194 |
[42] |
Zhao L, Huang J, Zhao ZH, Li Q, Sims TL, Xue YB. The skp1-like protein SSK1 is required for cross-pollen compatibility in S-RNase-based self-incompatibility. Plant J, 2010, 62(1): 52-63.
doi: 10.1111/j.1365-313X.2010.04123.x |
[43] |
Xu C, Li MF, Wu JK, Guo H, Li Q, Zhang YE, Chai JJ, Li TZ, Xue YB. Identification of a canonical SCF(SLF) complex involved in S-RNase-based self-incompatibility of Pyrus (Rosaceae). Plant Mol Biol, 2013, 81(3): 245-257.
doi: 10.1007/s11103-012-9995-x |
[44] |
Entani T, Kubo K, Isogai S, Fukao Y, Shirakawa M, Isogai A, Takayama S. Ubiquitin-proteasome-mediated degradation of S-RNase in a solanaceous cross- compatibility reaction. Plant J, 2014, 78(6): 1014-1021.
doi: 10.1111/tpj.2014.78.issue-6 |
[45] |
Lewis D. Competition and dominance of incompatibility alleles in diploid pollen. Heredity, 1947, 1: 85-108.
doi: 10.1038/hdy.1947.5 |
[46] |
Stout AB, Chandler C. Hereditary transmission of induced tetraploidy and compatibility in fertilization. Science, 1942, 96(2489): 257-258.
pmid: 17770529 |
[47] |
Sassa H, Kakui H, Miyamoto M, Suzuki Y, Hanada T, Ushijima K, Kusaba M, Hirano H, Koba T. S locus F-box brothers: multiple and pollen-specific F-box genes with S haplotype-specific polymorphisms in apple and Japanese pear. Genetics, 2007, 175(4): 1869-1881.
doi: 10.1534/genetics.106.068858 |
[48] |
Ushijima K, Sassa H, Dandekar AM, Gradziel TM, Tao R, Hirano H. Structural and transcriptional analysis of the self-incompatibility locus of almond: identification of a pollen-expressed F-box gene with haplotype-specific polymorphism. Plant Cell, 2003, 15(3): 771-781.
doi: 10.1105/tpc.009290 pmid: 12615948 |
[49] |
Hua Z, Kao TH. Identification and characterization of components of a putative Petunia S-locus F-box-containing E3 ligase complex involved in S-RNase-based self-incompatibility. Plant Cell, 2006, 18(10): 2531-2553.
doi: 10.1105/tpc.106.041061 |
[50] |
Kubo K, Entani T, Takara A, Wang N, Fields AM, Hua ZH, Toyoda M, Kawashima S, Ando T, Isogai A, Kao TH, Takayama S. Collaborative non-self recognition system in S-RNase-based self-incompatibility. Science, 2010, 330(6005): 796-799.
doi: 10.1126/science.1195243 |
[51] |
Ida K, Norioka S, Yamamoto M, Kumasaka T, Yamashita E, Newbigin E, Clarke AE, Sakiyama F, Sato M. The 1.55 Å resolution structure of Nicotiana alata SF11- RNase associated with gametophytic self-incompatibility. J Mol Biol, 2001, 314(1): 103-112.
pmid: 11724536 |
[52] |
Li JH, Zhang Y, Song YZ, Zhang H, Fan JB, Li Q, Zhang DF, Xue YB. Electrostatic potentials of the S-locus F-box proteins contribute to the pollen S specificity in self-incompatibility in Petunia hybrida. Plant J, 2017, 89(1): 45-57.
doi: 10.1111/tpj.2017.89.issue-1 |
[53] |
Liu W, Fan JB, Li JH, Song YZ, Li Q, Zhang YE, Xue YB. SCF(SLF)-mediated cytosolic degradation of S-RNase is required for cross-pollen compatibility in S-RNase-based self-incompatibility in Petunia hybrida. Front Genet, 2014, 5: 228.
doi: 10.3389/fgene.2014.00228 pmid: 25101113 |
[54] |
Zhao H, Song YZ, Li JH, Zhang Y, Huang HQ, Li Q, Zhang YE, Xue YB. Primary restriction of S-RNase cytotoxicity by a stepwise ubiquitination and degradation pathway in Petunia hybrida. New Phytol, 2021, 231(3): 1249-1264.
doi: 10.1111/nph.17438 pmid: 33932295 |
[55] |
Cabrillac D, Cock JM, Dumas C, Gaude T. The S-locus receptor kinase is inhibited by thioredoxins and activated by pollen coat proteins. Nature, 2001, 410(6825): 220-223.
doi: 10.1038/35065626 |
[56] |
Takayama S, Shimosato H, Shiba H, Funato M, Che FS, Watanabe M, Iwano M, Isogai A. Direct ligand- receptor complex interaction controls Brassica self- incompatibility. Nature, 2001, 413(6855): 534-538.
doi: 10.1038/35097104 |
[57] |
Ma R, Han ZF, Hu ZH, Lin GZ, Gong XQ, Zhang HQ, Nasrallah JB, Chai J. Structural basis for specific self-incompatibility response in Brassica. Cell Res, 2016, 26(12): 1320-1329.
doi: 10.1038/cr.2016.129 pmid: 27824028 |
[58] |
Murase K, Moriwaki Y, Mori T, Liu X, Masaka C, Takada Y, Maesaki R, Mishima M, Fujii S, Hirano Y, Kawabe Z, Nagata K, Terada T, Suzuki G, Watanabe M, Shimizu K, Hakoshima T, Takayama S. Mechanism of self/nonself-discrimination in Brassica self-incompatibility. Nat Commun, 2020, 11(1): 4916.
doi: 10.1038/s41467-020-18698-w pmid: 33004803 |
[59] |
Stone SL, Anderson EM, Mullen RT, Goring DR. ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell, 2003, 15(4): 885-898.
doi: 10.1105/tpc.009845 |
[60] |
Gu T, Mazzurco M, Sulaman W, Matias DD, Goring DR. Binding of an arm repeat protein to the kinase domain of the S-locus receptor kinase. Proc Natl Acad Sci USA, 1998, 95(1): 382-387.
pmid: 9419384 |
[61] |
Kakita M, Murase K, Iwano M, Matsumoto T, Watanabe M, Shiba H, Isogai A, Takayama S. Two distinct forms of M-locus protein kinase localize to the plasma membrane and interact directly with S-locus receptor kinase to transduce self-incompatibility signaling in Brassica rapa. Plant Cell, 2007, 19(12): 3961-3973.
doi: 10.1105/tpc.106.049999 |
[62] |
Samuel MA, Mudgil Y, Salt JN, Delmas F, Ramachandran S, Chilelli A, Goring DR.Interactions between the S-domain receptor kinases and AtPUB-ARM E3 ubiquitin ligases suggest a conserved signaling pathway in Arabidopsis. Plant Physiol, 2008, 147(4): 2084-2095.
doi: 10.1104/pp.108.123380 pmid: 18552232 |
[63] |
Samuel MA, Chong YT, Haasen KE, Aldea-Brydges MG, Stone SL, Goring DR. Cellular pathways regulating responses to compatible and self-incompatible pollen in Brassica and Arabidopsis stigmas intersect at Exo70A1, a putative component of the exocyst complex. Plant Cell, 2009, 21(9): 2655-2671.
doi: 10.1105/tpc.109.069740 |
[64] |
Sankaranarayanan S, Jamshed M, Kumar A, Skori L, Scandola S, Wang T, Spiegel D, Samuel MA. Glyoxalase goes green: the expanding roles of glyoxalase in plants. Int J Mol Sci, 2017, 18(4): 898.
doi: 10.3390/ijms18040898 |
[65] |
Sankaranarayanan S, Jamshed M, Samuel MA. Degradation of glyoxalase I in Brassica napus stigma leads to self-incompatibility response. Nat Plants, 2015, 1: 15185.
doi: 10.1038/nplants.2015.185 pmid: 27251720 |
[66] |
Scandola S, Samuel MA. A flower-specific phospholipase D is a stigmatic compatibility factor targeted by the self-incompatibility response in Brassica napus. Curr Biol, 2019, 29(3): 506-512.e4.
doi: S0960-9822(18)31671-3 pmid: 30661797 |
[67] |
Zhang LL, Huang JB, Su SQ, Wei XC, Yang L, Zhao HH, Yu JQ, Wang J, Hui JY, Hao SY, Song SS, Cao YY, Wang MS, Zhang XW, Zhao YY, Wang ZY, Zeng WQ, Wu HM, Yuan YX, Zhang XS, Cheung AY, Duan QH. FERONIA receptor kinase-regulated reactive oxygen species mediate self-incompatibility in Brassica rapa. Curr Biol, 2021, 31(14): 3004-3016.e4.
doi: 10.1016/j.cub.2021.04.060 |
[68] |
Iwano M, Ito K, Fujii S, Kakita M, Asano-Shimosato H, Igarashi M, Kaothien-Nakayama P, Entani T, Kanatani A, Takehisa M, Tanaka M, Komatsu K, Shiba H, Nagai T, Miyawaki A, Isogai A, Takayama S. Calcium signalling mediates self-incompatibility response in the Brassicaceae. Nat Plants, 2015, 1: 15128.
doi: 10.1038/nplants.2015.128 pmid: 27250681 |
[69] |
Wu JY, Wang S, Gu YC, Zhang SL, Publicover SJ, Franklin-Tong VE. Self-incompatibility in Papaver rhoeas activates nonspecific cation conductance permeable to Ca2+ and K+. Plant Physiol, 2011, 155(2): 963-973.
doi: 10.1104/pp.110.161927 |
[70] |
Wilkins KA, Poulter NS, Franklin-Tong VE. Taking one for the team: self-recognition and cell suicide in pollen. J Exp Bot, 2014, 65(5): 1331-1342.
doi: 10.1093/jxb/ert468 pmid: 24449385 |
[71] |
de Graaf BHJ, Rudd JJ, Wheeler MJ, Perry RM, Bell EM, Osman K, Franklin FCH, Franklin-Tong VE. Self-incompatibility in Papaver targets soluble inorganic pyrophosphatases in pollen. Nature, 2006, 444(7118): 490-493.
doi: 10.1038/nature05311 |
[72] |
Li ST, Samaj J, Franklin-Tong VE. A mitogen-activated protein kinase signals to programmed cell death induced by self-incompatibility in Papaver pollen. Plant Physiol, 2007, 145(1): 236-245.
doi: 10.1104/pp.107.101741 |
[73] |
Thomas SG, Huang SJ, Li ST, Staiger C J, Franklin-Tong VE. Actin depolymerization is sufficient to induce programmed cell death in self-incompatible pollen. J Cell Biol, 2006, 174(2): 221-229.
pmid: 16831890 |
[74] |
Wilkins KA, Bancroft J, Bosch M, Ings J, Smirnoff N, Franklin-Tong VE. Reactive oxygen species and nitric oxide mediate actin reorganization and programmed cell death in the self-incompatibility response of Papaver. Plant Physiol, 2011, 156(1): 404-416.
doi: 10.1104/pp.110.167510 pmid: 21386034 |
[75] | Lewis D, Jones DA. The genetics of heterostyly. Berlin: Springer, 1992. |
[76] | Huu CN, Plaschil S, Himmelbach A, Kappel C, Lenhard M.Female self-incompatibility type in heterostylous Primula is determined by the brassinosteroid- inactivating cytochrome P450 CYP734A50. Curr Biol, 2022, 32(3): 671-676. |
[77] | Huu CN, Keller B, Conti E, Kappel C, Lenhard M. Supergene evolution via stepwise duplications and neofunctionalization of a floral-organ identity gene. Proc Natl Acad Sci USA, 2020, 117(37): 23148-23157. |
[78] |
Matzke CM, Hamam HJ, Henning PM, Dougherty K, Shore JS, Neff MM, McCubbin AG. Pistil mating type and morphology are mediated by the brassinosteroid inactivating activity of the S-locus gene BAHD in heterostylous Turnera species. Int J Mol Sci, 2021, 22(19): 10603.
doi: 10.3390/ijms221910603 |
[79] |
Gutiérrez-Valencia J, Fracassetti M, Berdan EL, Bunikis I, Soler L, Dainat J, Kutschera VE, Losvik A, Désamoré A, Hughes PM, Foroozani A, Laenen B, Pesquet E, Abdelaziz M, Pettersson OV, Nystedt B, Brennan AC, Arroyo J, Slotte T. Genomic analyses of the Linum distyly supergene reveal convergent evolution at the molecular level. Curr Biol, 2022, 32(20): 4360-4371.
doi: 10.1016/j.cub.2022.08.042 |
[80] |
Elleman CJ, Franklin-Tong VE, Dickinson HG. Pollination in species with dry stigmas: the nature of the early stigmatic response and the pathway taken by pollen tubes. New Phytol, 1992, 121(3): 413-424.
doi: 10.1111/j.1469-8137.1992.tb02941.x pmid: 33874153 |
[81] |
Gonthier L, Blassiau C, Mörchen M, Cadalen T, Poiret M, Hendriks T, Quillet MC. High-density genetic maps for loci involved in nuclear male sterility (NMS1) and sporophytic self-incompatibility (S-locus) in chicory (Cichorium intybus L., Asteraceae). Theor Appl Genet, 2013, 126(8): 2103-2121.
doi: 10.1007/s00122-013-2122-9 pmid: 23689744 |
[82] |
Price JH, Raduski AR, Brandvain Y, Van Tassel DL, Smith KP. Development of first linkage map for Silphium integrifolium (Asteraceae) enables identification of sporophytic self-incompatibility locus. Heredity (Edinb), 2022, 128(5): 304-312.
doi: 10.1038/s41437-022-00530-4 |
[83] | Tabah DA, Mcinnis SM, Hiscock SJ. Members of the S-receptor kinase multigene family in Senecio squalidus L.(Asteraceae), a species with sporophytic self- incompatibility. Sex Plant Reprod, 2004, 17: 131-140. |
[84] | Wollenweber TE, van Deenen N, Roelfs KU, Prüfer D, Gronover CS. Microscopic and transcriptomic analysis of pollination processes in self-incompatible Taraxacum koksaghyz. Plants (Basel), 2021, 10(3): 555. |
[85] |
Palumbo F, Draga S, Magon G, Gabelli G, Vannozzi A, Farinati S, Scariolo F, Lucchin M, Barcaccia G. MIK2 is a candidate gene of the S-locus for sporophytic self-incompatibility in chicory (Cichorium intybus, Asteraceae). Front Plant Sci, 2023, 14: 1204538.
doi: 10.3389/fpls.2023.1204538 |
[86] | Arroyo MTK. Breeding systems and pollination biology in Leguminosae. In: Polhill RM, Raven PH, Advances in legume systematics. Royal Botanic Gardens, Kew, eds. 1981, 723-769 |
[87] |
Casey NM, Milbourne D, Barth S, Febrer M, Jenkins G, Abberton MT, Jones C, Thorogood D. The genetic location of the self-incompatibility locus in white clover (Trifolium repens L.). Theor Appl Genet, 2010, 121(3): 567-576.
doi: 10.1007/s00122-010-1330-9 pmid: 20383486 |
[88] |
Aguiar B, Vieira J, Cunha AE, Vieira CP. No evidence for Fabaceae gametophytic self-incompatibility being determined by Rosaceae, Solanaceae, and Plantaginaceae S-RNase lineage genes. BMC Plant Biol, 2015, 15: 129.
doi: 10.1186/s12870-015-0497-2 pmid: 26032621 |
[89] |
Delaney LE, Igi B. The phylogenetic distribution and frequency of self-incompatibility in Fabaceae. Int J Plant Sci, 2021, 183(1): 30-42.
doi: 10.1086/717329 |
[90] |
Xue Y, Carpenter R, Dickinson HG, Coen ES. Origin of allelic diversity in Antirrhinum S locus RNases. Plant Cell, 1996, 8(5): 805-814.
pmid: 8672882 |
[91] |
Igic B, Kohn JR. Evolutionary relationships among self-incompatibility RNases. Proc Natl Acad Sci USA, 2001, 98(23): 13167-13171.
doi: 10.1073/pnas.231386798 pmid: 11698683 |
[92] |
Ramanauskas K, Igić B. The evolutionary history of plant T2/S-type ribonucleases. PeerJ, 2017, 5: e3790.
doi: 10.7717/peerj.3790 |
[93] |
Wricke G, Wehling P. Linkage between an incompatibility locus and a peroxidase isozyme locus (Prx 7) in rye. Theor Appl Genet, 1985, 71(2): 289-291.
doi: 10.1007/BF00252069 pmid: 24247396 |
[94] |
Gertz A, Wricke G. Linkage between the incompatibility locus Z and a β-glucosidase locus in rye. Plant Breeding, 1989, 102(3): 255-259.
doi: 10.1111/pbr.1989.102.issue-3 |
[95] |
Thorogood D, Kaiser WJ, Jones JG, Armstead IP. Self-incompatibility in ryegrass 12. Genotyping and mapping the S and Z loci of Lolium perenne L. Heredity (Edinb), 2002, 88(5): 385-390.
doi: 10.1038/sj.hdy.6800071 |
[96] |
Philipp U, Wehling P, Wricke G. A linkage map of rye. Theor Appl Genet, 1994, 88(2): 243-248.
doi: 10.1007/BF00225904 pmid: 24185933 |
[97] | Wang YA, Zhao H, Zhu SH, Zhang HK, Chen YY, Tao X, Tong WZ, Tian HY, Guan Y, Huang HQ, Han QQ, Cheng ZK, Zhang YJ, Yi CD, Zhang YE, Xue YB. Control of gametophytic self-incompatibility in the African wild rice. Research Square, 2022, doi: 10.21203/rs.3.rs-2121145/v1. |
[98] |
Chen SY, Jia JT, Cheng LQ, Zhao PC, Qi DM, Yang WG, Liu H, Dong XB, Li XX, Liu GS. Transcriptomic analysis reveals a comprehensive calcium- and phytohormone-dominated signaling response in Leymus chinensis self-incompatibility. Int J Mol Sci, 2019, 20(9): 2356.
doi: 10.3390/ijms20092356 |
[99] |
Sonneveld T, Tobutt KR, Vaughan SP, Robbins TP. Loss of pollen-S function in two self-compatible selections of Prunus avium is associated with deletion/mutation of an S haplotype-specific F-box gene. Plant Cell, 2005, 17(1): 37-51.
pmid: 15598801 |
[100] |
Ushijima K, Yamane H, Watari A, Kakehi E, Ikeda K, Hauck NR, Iezzoni AF, Tao R. The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P. mume. Plant J, 2004, 39(4): 573-586.
doi: 10.1111/tpj.2004.39.issue-4 |
[101] |
Townsend CE. Further studies on the inheritance of a self-compatibility response to temperature and the segregation of S alleles in diploid Alsike clover. Crop Sci, 1971, 11(6): 860-863.
doi: 10.2135/cropsci1971.0011183X001100060028x |
[102] |
Endo S, Shinohara H, Matsubayashi Y, Fukuda H. A novel pollen-pistil interaction conferring high- temperature tolerance during reproduction via CLE45 signaling. Curr Biol, 2013, 23(17): 1670-1676.
doi: 10.1016/j.cub.2013.06.060 |
[103] |
Sears ER. Cytological phenomena connected with self-sterility in the flowering plants. Genetics, 1937, 22(1): 130-181.
doi: 10.1093/genetics/22.1.130 pmid: 17246827 |
[104] | Cabin RJ, Evans AS, Jennings DL, Marshall DL, Mitchell RJ, Sher AA. Using bud pollinations to avoid self-incompatibility: implications from studies of three mustards. Canad J Bot, 1996, 74(2): 285-289. |
[105] |
Lao XT, Suwabe K, Niikura S, Kakita M, Iwano M, Takayama S.Physiological and genetic analysis of CO2-induced breakdown of self-incompatibility in Brassica rapa. J Exp Bot, 2014, 65(4): 939-951.
doi: 10.1093/jxb/ert438 pmid: 24376255 |
[106] |
Hiscock SJ.Genetic control of self-incompatibility in Senecio squalidus L. (Asteraceae): a successful colonizing species. Heredity (Edinb), 2000, 85(Pt 1): 10-19.
doi: 10.1046/j.1365-2540.2000.00692.x |
[107] | Chen RD, Zhang QX. Primary study on the effect of GA on fruit setting rate in hybridization of Prunus mume. J Beijing For Univ, 2004, 26(S1): 57-63. |
[108] |
Sun CQ, Huang ZZ, Wang YL, Chen FD, Teng NJ, Fang WM, Liu ZL, Overcoming pre-fertilization barriers in the wide cross between Chrysanthemum grandiflorum (Ramat.) Kitamura and C. nankingense (Nakai) Tzvel. by using special pollination techniques. Euphytica, 2011, 178: 195-202.
doi: 10.1007/s10681-010-0297-6 |
[109] | Wehling P, Hackauf B, Wricke G. Phosphorylation of pollen proteins in relation to self-incompatibility in rye (Secale cereale L.). Sex Plant Reprod, 1994, 7(2): 67-75. |
[110] |
Klaas M., Yang BC, Bosch M, Thorogood D, Manzanares C, Armstead IP, Franklin FCH, Barth S. Progress towards elucidating the mechanisms of self-incompatibility in the grasses: further insights from studies in Lolium. Ann Bot, 2011, 108(4): 677-685.
doi: 10.1093/aob/mcr186 |
[111] |
Ye MW, Peng Z, Tang D, Yang ZM, Li DW, Xu YM, Zhang CZ, Huang SW. Generation of self-compatible diploid potato by knockout of S-RNase. Nat Plants, 2018, 4(9): 651-654.
doi: 10.1038/s41477-018-0218-6 pmid: 30104651 |
[112] |
Enciso-Rodriguez F, Manrique-Carpintero NC, Nadakuduti SS, Buell CR, Zarka D, Douches D.Overcoming self-incompatibility in diploid potato using CRISPR-Cas9. Front Plant Sci, 2019, 10: 376.
doi: 10.3389/fpls.2019.00376 pmid: 31001300 |
[113] |
Hosaka K, Hanneman RE. Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. 1. Detection of an S locus inhibitor (Sli) gene. Euphytica, 1998, 99(3): 191-197.
doi: 10.1023/A:1018353613431 |
[114] |
Hosaka K, Hanneman RE. Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. 2. Localization of an S locus inhibitor (Sli) gene on the potato genome using DNA markers. Euphytica, 1998, 103(2): 265-271.
doi: 10.1023/A:1018380725160 |
[115] |
Phumichai C, Mori M, Kobayashi A, Kamijima O, Hosaka K. Toward the development of highly homozygous diploid potato lines using the self-compatibility controlling Sli gene. Genome, 2005, 48(6): 977-984.
doi: 10.1139/g05-066 |
[116] |
Thorogood D, Armstead I P, Turner LB, Humphreys MO, Hayward MD. Identification and mode of action of self-compatibility loci in Lolium perenne L. Heredity (Edinb), 2005, 94(3): 356-363.
doi: 10.1038/sj.hdy.6800582 |
[117] |
Do Canto J, Studer B, Frei U, Lübberstedt T. Fine mapping a self-fertility locus in perennial ryegrass. Theor Appl Genet, 2018, 131(4): 817-827.
doi: 10.1007/s00122-017-3038-6 pmid: 29247258 |
[1] | 邢超凡, 王闽涛, 王磊, 申欣. 两侧对称动物左右不对称发生机制研究进展[J]. 遗传, 2023, 45(6): 488-500. |
[2] | 姜明亮, 郎红, 李晓楠, 祖野, 赵靖, 彭沈凌, 刘振, 战宗祥, 朴钟云. 植物孤基因研究进展[J]. 遗传, 2022, 44(8): 682-694. |
[3] | 郑泽权, 付巧妹, 刘逸宸. 应用古DNA技术探究发酵微生物的适应、演化和驯化历史[J]. 遗传, 2022, 44(5): 414-423. |
[4] | 付孟, 李艳. 家马的起源历史与品种驯化特征[J]. 遗传, 2022, 44(3): 216-229. |
[5] | 高珊珊, 李金良, 杨佳妮, 周通, 刘瑞, 王晓萍, 于黎. 哺乳动物滑翔和飞行性状适应性演化研究进展[J]. 遗传, 2022, 44(1): 46-58. |
[6] | 赵利楠, 王娜, 杨国良, 苏现斌, 韩泽广. 基于单细胞靶向测序探究基因碱基突变的方法[J]. 遗传, 2020, 42(7): 703-712. |
[7] | 杨岸奇, 陈斌, 冉茂良, 杨广民, 曾诚. 基因组选择在猪杂交育种中的应用[J]. 遗传, 2020, 42(2): 145-152. |
[8] | 高志伟, 王龙. 真核生物起源研究进展[J]. 遗传, 2020, 42(10): 929-948. |
[9] | 史晓黎,何伊琳,凌宏清. 小麦A基因组测序与进化研究进展[J]. 遗传, 2019, 41(9): 836-844. |
[10] | 于雪新,陈艾莉,李玥莹,刘丹,王前飞. 白血病的精准基因组医学研究与转化应用[J]. 遗传, 2018, 40(11): 988-997. |
[11] | 赵永欣, 李孟华, 赵要风. 中国绵羊起源、进化和遗传多样性研究进展[J]. 遗传, 2017, 39(11): 958-973. |
[12] | 张焕萍, 尹佟明. 谱系特有基因研究进展[J]. 遗传, 2015, 37(6): 544-553. |
[13] | 张永虎,于海峰,侯建华,李素萍,吕品,于志贤. 利用向日葵重组自交系构建遗传图谱[J]. 遗传, 2014, 36(10): 1036-1042. |
[14] | 刘静 杜建厂. 植物LTR-反转座子中Orf1基因的分子进化[J]. 遗传, 2013, 35(9): 1117-1124. |
[15] | 张采波 吴章东 徐冬平 刘和洋 荣廷昭 曹墨菊. 玉米空间诱变后代SP4选系配合力效应分析[J]. 遗传, 2013, 35(7): 903-912. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: