遗传 ›› 2024, Vol. 46 ›› Issue (3): 242-255.doi: 10.16288/j.yczz.23-210
韦恒1(), 刘天鹏2, 何继红2, 董孔军2, 任瑞玉2, 张磊2, 李亚伟2, 郝子义1, 杨天育1,2(
)
收稿日期:
2023-08-01
修回日期:
2024-01-10
出版日期:
2024-03-20
发布日期:
2024-01-26
通讯作者:
杨天育
E-mail:1715414764@qq.com;13519638111@163.com
作者简介:
韦恒,硕士研究生,专业方向:小杂粮遗传育种。E-mail: 1715414764@qq.com
基金资助:
Heng Wei1(), Tianpeng Liu2, Jihong He2, Kongjun Dong2, Ruiyu Ren2, Lei Zhang2, Yawei Li2, Ziyi Hao1, Tianyu Yang1,2(
)
Received:
2023-08-01
Revised:
2024-01-10
Published:
2024-03-20
Online:
2024-01-26
Contact:
Tianyu Yang
E-mail:1715414764@qq.com;13519638111@163.com
Supported by:
摘要:
为了解糜子(Panicum miliaceum L.) GRF (growth-regulating factor)基因家族成员全基因组信息及其在营养生长阶段分生组织中的表达特征,本研究通过生物信息学和转录组测序相结合的方法,分析了糜子GRF基因家族成员的染色体分布、基因结构、系统进化关系、顺式作用元件及其在营养器官茎分生组织中的表达特征。结果表明:糜子GRF基因家族包含21个成员,家族成员含有1~4个内含子和2~5个外显子,编码蛋白长度为224~618个氨基酸,等电点为4.93~9.69;PmGRF基因不均等分布于12条染色体上,除PmGRF13定位于细胞核和叶绿体外,其余均定位于细胞核。系统进化分析显示,糜子21个GRF基因分为4个亚族(A、B、C和D)。顺式作用元件分析表明,在糜子GRF基因上游2000 bp序列中,普遍存在数目不等、种类不同的参与光响应、激素响应、干旱诱导、低温和其他环境胁迫响应的顺式作用元件。对糜子高秆品种陇糜12号和矮秆品种张778拔节期节间和节部分生组织分别取样进行转录组测序及qRT-PCR分析,结果发现:PmGRF3、PmGRF12在矮秆品种张778中表达量显著高于高秆品种陇糜12号,而PmGRF4、PmGRF16和PmGRF21的表达特征与之相反;PmGRF2和PmGRF5在张778节间分生组织中的表达量显著高于陇糜12号,其余GRF基因不表达或差异表达不显著,表明PmGRF2、PmGRF3、PmGRF4、PmGRF5、PmGRF12、PmGRF16和PmGRF21等7个基因与糜子株高的形成相关。
韦恒, 刘天鹏, 何继红, 董孔军, 任瑞玉, 张磊, 李亚伟, 郝子义, 杨天育. 糜子GRF转录因子全基因组鉴定及在茎分生组织中的表达特征[J]. 遗传, 2024, 46(3): 242-255.
Heng Wei, Tianpeng Liu, Jihong He, Kongjun Dong, Ruiyu Ren, Lei Zhang, Yawei Li, Ziyi Hao, Tianyu Yang. Genome-wide identification of GRF transcription factors and their expression profile in stem meristem of broomcorn millet (Panicum miliaceum L.)[J]. Hereditas(Beijing), 2024, 46(3): 242-255.
表1
qRT-PCR的引物序列"
基因名称 | 引物序列(5'→3') |
---|---|
PmGRF2 | F:GACACAGCACATGGCAACGA R:GTGAGCGGCACATCAACAGA |
PmGRF3 | F:GCAGCAACAGCAGCACTTCA R:GACGAGATGAGTAGGCACAGGT |
PmGRF4 | F:CGGTGCTGCTGGAGACTGAT R:GGCAACGATGTTCCGTGATTCT |
PmGRF5 | F:TTGAGTCGTCACTGTTCTTGGA R:CGGACAACCTGCCTTACATCTA |
PmGRF12 | F:GCAGCAACAGCAGCACTTCA R:GACGAGATGAGTAGGCACAGGT |
PmGRF16 | F:GGTCGCAGTCCATTGGTCAGT R:CGGAGTAGGCAGTTCAGCAGAA |
PmGRF21 | F:TGCCGTCCAGCTTGCTCCTT R:CACCGCCACTTCTTGCCATCAG |
Pmactin | F:GGCATCACACCTTCTACAAC R:TCTCGAACATGATCTGGGTC |
表2
糜子GRF基因家族理化性质及亚细胞定位信息"
基因名称 | 基因ID | 氨基酸数 | 分子质量 (Da) | 等电点 | 不稳定 指数 | 脂肪族氨基酸指数 | 亲水性平 均系数 | 亚细胞定位 | 基因染色 体定位 |
---|---|---|---|---|---|---|---|---|---|
PmGRF1 | LM01CHG000904 | 591 | 61,524.63 | 6.57 | 49.17 | 70.34 | -0.270 | 细胞核 | Chr.1 |
PmGRF2 | LM01CHG001244 | 505 | 55,604.61 | 9.29 | 53.48 | 63.25 | -0.763 | 细胞核 | Chr.1 |
PmGRF3 | LM02CHG001176 | 259 | 27,206.29 | 5.05 | 53.67 | 59.31 | -0.669 | 细胞核 | Chr.2 |
PmGRF4 | LM04CHG000872 | 587 | 61,483.46 | 6.57 | 50.54 | 68.14 | -0.325 | 细胞核 | Chr.4 |
PmGRF5 | LM04CHG001174 | 421 | 46,386.86 | 9.33 | 55.54 | 59.45 | -0.805 | 细胞核 | Chr.4 |
PmGRF6 | LM04CHG002106 | 375 | 40,549.16 | 9.03 | 64.84 | 51.23 | -0.866 | 细胞核 | Chr.4 |
PmGRF7 | LM06CHG000359 | 456 | 64,962.13 | 7.20 | 62.26 | 54.42 | -0.548 | 细胞核 | Chr.6 |
PmGRF8 | LM06CHG000847 | 591 | 41,514.19 | 6.57 | 60.45 | 64.39 | -0.430 | 细胞核 | Chr.6 |
PmGRF9 | LM06CHG000971 | 618 | 23,148.19 | 9.43 | 49.83 | 68.17 | -0.266 | 细胞核 | Chr.6 |
PmGRF10 | LM07CHG000108 | 392 | 38,520.84 | 7.05 | 52.44 | 55.20 | -0.646 | 细胞核 | Chr.7 |
PmGRF11 | LM07CHG000642 | 224 | 35,200.07 | 9.64 | 59.85 | 56.34 | -0.673 | 细胞核 | Chr.7 |
PmGRF12 | LM11CHG001144 | 356 | 27,888.04 | 8.92 | 55.18 | 60.79 | -0.626 | 细胞核 | Chr.11 |
PmGRF13 | LM12CHG002278 | 331 | 23,779.94 | 9.11 | 43.53 | 69.21 | -0.228 | 叶绿体、细胞核 | Chr.12 |
PmGRF14 | LM12CHG002388 | 267 | 41,572.33 | 4.93 | 60.41 | 64.87 | -0.444 | 细胞核 | Chr.12 |
PmGRF15 | LM12CHG002856 | 229 | 41,699.42 | 9.69 | 56.70 | 47.23 | -0.733 | 细胞核 | Chr.12 |
PmGRF16 | LM13CHG000540 | 392 | 40,124.76 | 7.05 | 53.80 | 66.04 | -0.481 | 细胞核 | Chr.13 |
PmGRF17 | LM14CHG000674 | 371 | 40,471.29 | 7.68 | 54.41 | 59.10 | -0.482 | 细胞核 | Chr.14 |
PmGRF18 | LM15CHG002021 | 254 | 40,606.53 | 9.72 | 55.03 | 61.14 | -0.478 | 细胞核 | Chr.15 |
PmGRF19 | LM16CHG000105 | 376 | 38,631.90 | 8.74 | 54.94 | 54.61 | -0.635 | 细胞核 | Chr.16 |
PmGRF20 | LM16CHG000628 | 376 | 39,074.77 | 8.81 | 66.46 | 61.72 | -0.493 | 细胞核 | Chr.16 |
PmGRF21 | LM17CHG001185 | 358 | 40,177.86 | 8.93 | 53.50 | 66.46 | -0.466 | 细胞核 | Chr.17 |
[1] | Liebsch D, Palatnik JF. MicroRNA miR396, GRF transcription factors and GIF co-regulators: a conserved plant growth regulatory module with potential for breeding and biotechnology. Curr Opin Plant Bioly, 2020, 53: 31-42. |
[2] | Yang XR, He SE, Chen SX. Research progress of GRF transcription factors in plants. Eucalyptus Sci & Technol, 2022, 39(3): 57-66. |
杨雪芮, 何沙娥, 陈少雄. GRF转录因子在植物中的研究进展. 桉树科技, 2022, 39(3): 57-66. | |
[3] |
Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell, 2004, 119(1): 109-120.
doi: 10.1016/j.cell.2004.09.018 |
[4] | Shi PB, He B, Fei YY, Wang J, Wang WY, Wei FY, Lv YD, Gu MF. Identification and expression analysis of GRF transcription factor family of Chenopodium quinoa. Acta Agron Sin, 2019, 45(12): 1841-1850. |
时丕彪, 何冰, 费月跃, 王军, 王伟义, 魏福友, 呂远大, 顾闽峰. 藜麦GRF转录因子家族的鉴定及表达分析. 作物学报, 2019, 45(12): 1841-1850.
doi: 10.3724/SP.J.1006.2019.94049 |
|
[5] |
Kim JH, Kende H. A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabidopsis. Proc Natl Acad Sci USA, 2004, 101(36): 13374-13379.
doi: 10.1073/pnas.0405450101 |
[6] |
Rodriguez RE, Ercoli MF, Debernardi JM, Breakfield NW, Mecchia MA, Sabatini M, Cools T, de Veyldeer L, Benfey PN, Palatnik JF. MicroRNA miR396 regulates the switch between stem cells and transit-amplifying cells in Arabidopsis roots. Plant Cell, 2015, 27(12): 3354-3366.
doi: 10.1105/tpc.15.00452 |
[7] | Dai MY, Gao M, Li WC. Bioinformatics identification and expression analysis of GRF transcription factor family of Castor Bean. Mol Plant Breed, 2019, 19(22): 7383-7390. |
代梦媛, 高梅, 李文昌. 蓖麻GRF转录因子家族生物信息学鉴定及表达分析. 分子植物育种, 2021, 19(22): 7383-7390. | |
[8] |
Huang WD, He YQ, Yang L, Lu C, Zhu YX, Sun C, Ma DF, Yin JL. Genome-wide analysis of growth-regulating factors (GRFs) in Triticum aestivum. PeerJ, 2021, 9: e10701.
doi: 10.7717/peerj.10701 |
[9] | Yuan Q, Zhang CL, Zhao TT, Xu XY. Research advances of GRF transcription factor in plant. Genomics Appl Biol, 2017, 36(8): 3145-3151. |
袁岐, 张春利, 赵婷婷, 许向阳. 植物中GRF转录因子的研究进展. 基因组学与应用生物学, 2017, 36(8): 3145-3151. | |
[10] |
van der Knaap E, Kim JH, Kende H. A novel gibberellin- induced gene from rice and its potential regulatory role in stem growth. Plant Physiol, 2000, 122(3): 695-704.
doi: 10.1104/pp.122.3.695 pmid: 10712532 |
[11] |
Choi D, Kim JH, Kende H. Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in rice (Oryza sativa L.). Plant Cell Physiol, 2004, 45(7): 897-904.
doi: 10.1093/pcp/pch098 |
[12] |
Kim JH, Choi D, Kende H. The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J, 2003, 36(1): 94-104.
pmid: 12974814 |
[13] |
Vroemen CW, Mordhorst AP, Albrecht C, Kwaaitaal MACJ, de Vries SC. The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell, 2003, 15(7): 1563-1577.
doi: 10.1105/tpc.012203 pmid: 12837947 |
[14] |
Chen HL, Ge WN. Identification, molecular characteristics, and evolution of GRF gene family in foxtail millet (Setaria italica L.). Front Genet, 2022, 12: 727674.
doi: 10.3389/fgene.2021.727674 |
[15] |
Zhang DF, Li B, Jia GQ, Zhang TF, Dai JR, Li JS, Wang SC. Isolation and characterization of genes encoding GRF transcription factors and GIF transcriptional coactivators in maize (Zea mays L.). Plant Sci, 2008, 175(6): 809-817.
doi: 10.1016/j.plantsci.2008.08.002 |
[16] |
Chen F, Yang YZ, Luo XF, Zhou WG, Dai YJ, Zheng C, Liu WG, Yang WY, Shu K. Genome-wide identification of GRF transcription factors in soybean and expression analysis of GmGRF family under shade stress. BMC Plant Biol, 2019, 19(1): 269.
doi: 10.1186/s12870-019-1861-4 |
[17] |
Zhang JF, Li ZF, Jin JJ, Xie XD, Zhang H, Chen QS, Luo ZP, Yang J. Genome-wide identification and analysis of the growth-regulating factor family in tobacco (Nicotiana tabacum). Gene, 2018, 639: 117-127.
doi: S0378-1119(17)30804-1 pmid: 28978430 |
[18] | Wang Y, Zhang LN, Tang FY, Zhao XX, Xi YJ, Wang WW. Genome-wide identification and analysis of GRF transcription factors family in switchgrass. Acta Agrestia Sinica, 2019, 30(3): 575-586. |
王燕, 张礼宁, 唐方毅, 赵晓晓, 奚亚军, 王伟伟. 柳枝稷GRF转录因子家族全基因组鉴定与分析. 草地学报, 2022, 30(3): 575-586.
doi: 10.11733/j.issn.1007-0435.2022.03.009 |
|
[19] | Jin L, Hass Agula, Gao F. Genome-wide identification and analysis of growth regulating factor genes(GRF) in cucumis melo L. Genomics Appl Biol, 2020, 39(8): 3554-3560. |
金兰, 哈斯阿古拉, 高峰. 甜瓜GRF转录因子的全基因组鉴定和分析. 基因组学与应用生物学, 2020, 39(8): 3554-3560. | |
[20] |
Liu L, Li XJ, Li B, Sun MY, Li SX. Genome-wide analysis of the GRF gene family and their expression profiling in peach (Prunus persica). J Plant Interact, 2022, 17(1): 437-449.
doi: 10.1080/17429145.2022.2045370 |
[21] | Li ZQ, Xie Q, Yan JH, Chen JQ, Chen QX. Genome-wide identification and characterization of the abiotic-stress- responsive GRF gene family in diploid woodland strawberry (Fragaria vesca). Plants (Basel), 2021, 10(9): 1916. |
[22] |
Huang J, Chen GZ, Ahmad S, Hao Y, Chen JL, Zhou YZ, Lan SR, Liu ZJ, Peng DH. Genome-wide identification and characterization of the GRF gene family in Melastoma dodecandrum. Int J Mol Sci, 2023, 24(2): 1261.
doi: 10.3390/ijms24021261 |
[23] |
Dong KJ, Liu TP, He JH, Ren RY, Zhang L, Yang TY. Evaluation and identification indexes selection on the drought resistance of broomcorn millet bred cultivars at seeding stage. J Plant Genet Resour, 2015, 16(5): 968-975.
doi: 10.13430/j.cnki.jpgr.2015.05.007 |
董孔军, 刘天鹏, 何继红, 任瑞玉, 张磊, 杨天育. 糜子育成品种苗期抗旱性评价与鉴定指标筛选. 植物遗传资源学报, 2015, 16(5): 968-975.
doi: 10.13430/j.cnki.jpgr.2015.05.007 |
|
[24] |
Yuan YH, Liu CJ, Gao YB, Ma Q, Yang QH, Feng BL. Proso millet (Panicum miliaceum L.): a potential crop to meet demand scenario for sustainable saline agriculture. J Environ Manage, 2021, 296: 113216.
doi: 10.1016/j.jenvman.2021.113216 |
[25] |
Yang P, Panhwar RB, Li J, Gao JF, Gao XL, Wang PK, Feng BL. Changes of yield and traits of broomcorn millet cultivars in China based on the data from national cultivars regional adaptation test. Sci Agric Sin, 2017, 50(23):4517-4529.
doi: 10.3864/j.issn.0578-1752.2017.23.006 |
杨璞, Rabia Begum Panhwar, 李境, 高金锋, 高小丽, 王鹏科, 冯佰利. 基于国家品种区域试验数据的中国糜子品种产量和性状变化. 中国农业科学, 2017, 50(23): 4517-4529.
doi: 10.3864/j.issn.0578-1752.2017.23.006 |
|
[26] |
Lin FY, Wang SQ, Hu YG, He BR.Cloning of A S-adenosylmethionine synthetase gene from broomcorn millet (Panicum miliaceum L.) and its expression during drought and re-watering. Acta Agron Sin, 2008, 34(5): 777-782.
doi: 10.3724/SP.J.1006.2008.00777 |
林凡云, 王士强, 胡银岗, 何蓓如. 糜子SAMS基因的克隆及其在干旱复水中的表达模式分析. 作物学报, 2008, 34(5): 777-782. | |
[27] |
Lin FY, Wang SQ, Hu YG, He BR. Cloning and expression analysis of drought-tolerant and water saving gene PmMYB in broomcorn millet. Hereditas (Beijing), 2008, 30(3): 373-379.
doi: 10.3724/SP.J.1005.2008.00373 |
林凡云, 王士强, 胡银岗, 何蓓如. 糜子抗旱节水相关基因PmMYB的克隆及表达分析. 遗传, 2008, 30(3): 373-379. | |
[28] | Pan WX, Liu TP, He JH, Dong KJ, Ren RY, Zhang L, Yang TY. Genome-wide identification and expression characteristics of the YABBY gene family under hypertonic solution stress in broomcorn millet (Panicum miliaceum L.). Genomics Appl Biol, 2022, 41(5): 1067-1078. |
盘婉向, 刘天鹏, 何继红, 董孔军, 任瑞玉, 张磊, 杨天育. 糜子(Panicum miliaceum L.)全基因组YABBY基因家族鉴定与高渗溶液胁迫下表达特征. 基因组学与应用生物学, 2022, 41(5): 1067-1078. | |
[29] | Wang M, Liu TP, He JH, Dong KJ, Ren RY, Zhang L, Yang TY. Genome-wide identification of bZIP gene family in broomcorn millet and analysis of its expression characteristics under polyethylene glycol treatment in seedling stage. Chin J Appl Environ Biol, 2022, 28(4): 920-930. |
王媚, 刘天鹏, 何继红, 董孔军, 任瑞玉, 张磊, 杨天育. 糜子bZIP基因家族鉴定及幼苗期聚乙二醇6000处理下的表达特征. 应用与环境生物学报, 2022, 28(4): 920-930. | |
[30] | Xin XX, Zheng XR, Wang HG, Chen L, Dipak KS, Wang RY, Qiao ZJ. Cloning and bioinformatics analysis of PmNAC1 in broomcorn millet. J Shanxi Agric Sci, 2023, 51(10):1162-1169. |
辛旭霞, 郑香然, 王海岗, 陈凌, Santra Dipak K, 王瑞云, 乔治军. 糜子PmNAC1的克隆及生物信息学分析. 山西农业科学, 2023, 51(10): 1162-1169. | |
[31] | Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador- Vegas A, Salazar GA, Tate J, Bateman A. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res, 2016, 44(D1): D279-D285. |
[32] |
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33(7): 1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904 |
[33] | Ren RY, He JH, Dong KJ, Zhang L, Liu TP, Yang TY. Report on new-bred broomcorn millet cultivar Longmi 12. Gansu Agric Sci Technol, 2017, (3): 14-16. |
任瑞玉, 何继红, 董孔军, 张磊, 刘天鹏, 杨天育. 糜子新品种陇糜12号选育报告. 甘肃农业科技, 2017,(3): 14-16. | |
[34] | Zhang B, Jia XP, Yang DZ, Zhao Y, Dai LF, Kou SJ, Zhang XM, Hou DY, Zhu XH. Investigation on agronomic characters of dwarf mutant in Panicum miliaceuml and analysis of its sensitivity to GA. Acta Agric Zhejiangensis, 2019, 31(5): 688-694. |
张博, 贾小平, 杨德智, 赵渊, 戴凌峰, 寇淑君, 张小梅, 侯典云, 朱学海. 糜子矮秆突变体778农艺性状调查及其对GA的敏感性分析. 浙江农业学报, 2019, 31(5): 688-694.
doi: 10.3969/j.issn.1004-1524.2019.05.02 |
|
[35] |
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[36] |
Cao JF, Huang JQ, Liu X, Huang CC, Zheng ZS, Zhang XF, Shangguan XX, Wang LJ, Zhang YG, Wendel JF, Grover CE, Chen ZW. Genome-wide characterization of the GRF family and their roles in response to salt stress in Gossypium. BMC Genomics, 2020, 21(1): 1-16.
doi: 10.1186/s12864-019-6419-1 |
[37] | Wang PJ, Zheng YC, Lin Y, Zhou Z, Yang JF, Ye NX. Genome-wide identification and expression analysis of GRF gene family in Camellia sinensis. Acta Bot Boreali- Occidentalia Sin, 2019, 39(3): 413-421. |
王鹏杰, 郑玉成林浥, 周珍, 杨江帆, 叶乃兴. 茶树GRF基因家族的全基因组鉴定及表达分析. 西北植物学报, 2019, 39(3): 413-421. | |
[38] |
Zafar I, Rubab A, Aslam M, Ahmad SU, Liyaqat I, Malik A, Alam M, Wani TA, Khan AA. Genome-wide identification and analysis of GRF (growth-regulating factor) gene family in Camila sativa through in silico approaches. J King Saud Univ-Sci, 2022, 34(4): 102038.
doi: 10.1016/j.jksus.2022.102038 |
[39] |
Wang FD, Qiu NW, Ding Q, Li JJ, Zhang YH, Li HY, Gao JW. Genome-wide identification and analysis of the growth-regulating factor family in Chinese cabbage (Brassica rapa L. ssp. pekinensis). BMC Genomics, 2014, 15(1): 1-12.
doi: 10.1186/1471-2164-15-1 |
[1] | 时文睿, 渠鸿竹, 方向东. 痛风的多组学研究进展[J]. 遗传, 2023, 45(8): 643-657. |
[2] | 韩熙, 罗富成. 单细胞转录组测序在少突胶质谱系细胞异质性与神经系统疾病中的应用[J]. 遗传, 2023, 45(3): 198-211. |
[3] | 郭彦, 杨乐乐, 戚华宇. 小鼠雄性生殖干细胞转录组分析揭示成熟精原干细胞特征[J]. 遗传, 2022, 44(7): 591-608. |
[4] | 赵三增, 孔丹宇, 辛培勇, 褚金芳, 万迎朗, 凌宏清, 刘毅. AtCPS V326M突变显著影响赤霉素合成[J]. 遗传, 2022, 44(3): 245-252. |
[5] | 骆红波, 曹鹏博, 周钢桥. DNA甲基化驱动的转录表达特征作为肝癌预后预测标志物的价值[J]. 遗传, 2020, 42(8): 775-787. |
[6] | 石田培,张莉. 全转录组学在畜牧业中的应用[J]. 遗传, 2019, 41(3): 193-205. |
[7] | 张高华, 于树涛, 王鹤, 王旭达. 高油酸花生发芽期低温胁迫转录组及差异表达基因分析[J]. 遗传, 2019, 41(11): 1050-1059. |
[8] | 任岚,肖茹丹,张倩,娄晓敏,张昭军,方向东. KLF1和KLF9对K562细胞红系分化的协同调控作用[J]. 遗传, 2018, 40(11): 998-1006. |
[9] | 杨莹,陈宇晟,孙宝发,杨运桂. RNA甲基化修饰调控和规律[J]. 遗传, 2018, 40(11): 964-976. |
[10] | 刘亚军,张峰,刘宏德,孙啸. 下一代测序技术在干细胞转录调控研究中的应用[J]. 遗传, 2017, 39(8): 717-725. |
[11] | 叶仲杰,刘启鹏,岑山,李晓宇. LINE-1编码的逆转录酶在肿瘤形成过程中的作用[J]. 遗传, 2017, 39(5): 368-376. |
[12] | 魏凯,马磊. 高通量测序时代下持家基因定义的发展[J]. 遗传, 2017, 39(2): 127-134. |
[13] | 李光奇, 孙从佼, 吴桂琴, 石凤英, 刘爱巧, 孙皓, 杨宁. 利用转录组测序筛选鸡蛋褐壳性状相关基因[J]. 遗传, 2017, 39(11): 1102-1111. |
[14] | 刘永明, 张玲, 邱涛, 赵卓凡, 曹墨菊. 高通量转录组测序技术在植物雄性不育研究中的应用[J]. 遗传, 2016, 38(8): 677-687. |
[15] | 朱帅旗, 龚一富, 杭雨晴, 刘浩, 王何瑜. 绿色杜氏藻转录组分析[J]. 遗传, 2015, 37(8): 828-836. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: