遗传 ›› 2025, Vol. 47 ›› Issue (3): 351-365.doi: 10.16288/j.yczz.24-243

• 研究报告 • 上一篇    下一篇

基于转录组学挖掘与分析NJ9108水稻种子寿命的关键基因

韩超飞1,2(), 陈灵5, 王源秀2, 程前2, 左胜2, 刘华彬4(), 王程亮2,3()   

  1. 1.西华师范大学生命科学学院,南充 637002
    2.安徽师范大学生命科学学院,芜湖 241001
    3.河南大学,作物逆境适应与改良国家重点实验室,开封 475000
    4.安徽科技学院生命与健康科学学院,蚌埠 233100
    5.武汉大学高等研究院,武汉 430072
  • 收稿日期:2024-07-11 修回日期:2024-11-09 出版日期:2025-01-16 发布日期:2025-01-16
  • 通讯作者: 王程亮,博士,特聘教授,研究方向:种子生物学。E-mail: clwang@ahnu.edu.cn;
    刘华彬,博士,讲师,研究方向:种子生物学。E-mail: liuhb@ahstu.edu.cn
  • 作者简介:韩超飞,硕士研究生,专业方向:种子生物学。E-mail: 2535022780@qq.com
  • 基金资助:
    国家自然科学基金项目(32101646);安徽省科学技术厅重点研发项目(2023n06020004);中国博士后科学基金(348510);芜湖市科学技术局应用基础研究项目(2022jc10)

Mining and analysis of key genes related to rice seed longevity in NJ9108 based on transcriptomics

Chaofei Han1,2(), Ling Chen5, Yuanxiu Wang2, Qian Cheng2, Sheng Zuo2, Huabin Liu4(), Chengliang Wang2,3()   

  1. 1. College of Life Sciences, China West Normal University, Nanchong 637002, China
    2. College of Life Sciences, Anhui Normal University, Wuhu 241001, China
    3. State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475000, China
    4. College of Life and Health Sciences, Anhui Science and Technology University, Bengbu 233100, China
    5. Institute of Advanced Studies, Wuhan University, Wuhan 430072, China
  • Received:2024-07-11 Revised:2024-11-09 Published:2025-01-16 Online:2025-01-16
  • Supported by:
    National Natural Science Foundation of China(32101646);Key Research and Development Project of Anhui Science and Technology Agency(2023n06020004);China Postdoctoral Science Foundation(348510);Wuhu Science and Technology Bureau Project(2022jc10)

摘要:

种子寿命是种子在贮藏期间维持生活力的一段时间,是衡量种子质量的重要指标,其寿命的改变直接影响种子在田间的出苗率、幼苗形态建成以及储藏时间。因此,挖掘种子寿命基因对培育耐储藏和长寿命种子具有重要的价值。本研究通过对不同水稻品系的种子进行人工加速老化处理,发现NJ9108种子是一种耐老化的水稻品系。利用转录组技术,对其未老化和老化后所注释的基因进行mfuzz模糊聚类,可分为6个亚类,共有8,384个基因被老化诱导上调/下调表达;对这些差异表达基因进行GO和KEGG富集分析显示,在生物学过程(biological processes,BP)、细胞组分(cellular components,CC)和分子功能(molecular functions,MF)中的差异显著基因有42个被富集到苯丙烷类生物合成、31个被富集到糖信号以及42个被富集到植物激素信号转导等通路中,它们作为最主要的通路参与NJ9108的耐老化过程。qRT-PCR结果显示,与ZH11相比,NJ9108种子经老化处理后,苯丙烷类生物合成通路中的4-香豆酸辅酶A连接酶5(4CL5)、肉桂醇脱氢酶5(CAD5)以及过氧化物酶体3和86(PRX3PRX86)等基因显著上调表达;糖信号通路中的β-葡萄糖苷酶18和22(BGLU18BGLU22)及海藻糖-6-磷酸磷酸酶3(TPP3)基因同样显著上调表达;植物激素信号转导通路中的细胞分裂素响应12(RR12)和响应脱落酸(ABA)诱导的蛋白激酶5(SAPK5)基因老化后显著上调表达,而生长素响应基因12和20(IAA12IAA20)显著下调表达,以上基因的表达趋势均与转录组数据结果一致,暗示它们可能是调控水稻种子寿命的关键基因,其中BGLU18、BGLU22、OsRR12TPP3作为最新鉴定的种子寿命基因后续可重点进行研究。本研究结果为解析水稻种子寿命调控网络和培育耐老化的水稻品系提供了一定的理论基础。

关键词: 种子寿命, 转录组, 植物激素, 糖信号, 苯丙烷合成

Abstract:

Seed longevity is the period over which seeds remain viable and capable of gemination, and is an important trait of seed quality. Longevity changes in seed directly affect the germination rate, seedling morphology, and storage time. Therefore, the identification of seed longevity genes has significant value for cultivating seeds that are storage-resistant and have long lifespan. The study found that NJ9108 seeds are a type of rice that is resistant to aging; Using transcriptomic technology, the annotated genes were subjected to mfuzz fuzzy clustering and divided into 6 subtypes, with a total of 8,384 genes upregulated/downregulated by aging induction. These differentially expressed genes are enriched into biological processes (BP), cellular components (CC), and molecular functions (MF), with 42 genes enriched in phenylpropanoid biosynthesis, 31 genes enriched in sugar signaling, and 42 genes enriched in plant hormone signaling pathways. They are the most important pathways involved in the aging resistance process of NJ9108. qRT-PCR results showed that compared with ZH11, 4CL5, CAD5, PRX3 and PRX86 in the phenylpropanoid biosynthesis pathway were significantly upregulated in NJ9108 after aging; BGLU18, BGLU22 and TPP3 in the sugar signaling pathway were significantly upregulated in NJ9108; RR12 and SAPK5 involved in the plant hormone signaling pathway were significantly upregulated after aging, while IAA12 and IAA20 were significantly downregulated in NJ9108 seeds. The expression trends of these genes are consistent with transcriptomic results, suggesting that these genes regulating rice seed longevity. BGLU18, BGLU22, OsRR12, and TPP3, as the new identified seed longevity genes, can be further studied in the future. Above all, the experimental results provide a theoretical basis for understanding the regulatory network of rice seed longevity and for breeding rice varieties that are resistant to aging.

Key words: seed longevity, transcriptome, plant hormones, sugar signal, phenylpropanoid biosynthesis