遗传 ›› 2024, Vol. 46 ›› Issue (12): 995-1016.doi: 10.16288/j.yczz.24-272
收稿日期:
2024-09-19
修回日期:
2024-10-31
出版日期:
2024-12-20
发布日期:
2024-11-18
通讯作者:
王晓萍,博士,副研究员,研究方向:动物遗传与进化。E-mail: wangxp@ynu.edu.cn作者简介:
吴秀红,硕士研究生,专业方向:遗传学。E-mail: xiuzi.wu@foxmail.com;吴秀红和汪亚军并列第一作者。
基金资助:
Xiuhong Wu1(), Yajun Wang1(
), Lifeng Che2, Xiaoping Wang1(
)
Received:
2024-09-19
Revised:
2024-10-31
Published:
2024-12-20
Online:
2024-11-18
Supported by:
摘要:
在适应性演化的推动下,动物发展出了多种适应性特征,这些特征对它们的生存和繁衍至关重要。揭示适应性演化的分子机制对理解物种多样化、表型趋同等重要生物学现象具有关键意义。随着多组学技术的发展与成熟,基因组非编码DNA调控元件已被证明在动物适应性性状演化过程中发挥着重要调控作用。本文概述了非编码DNA调控元件的特征及其作用机制,并从动物附肢适应性状、动物极端环境适应性状以及动物其他特殊表型适应性状这3个方面综述了其在动物适应性性状演化中的分子机制,为理解动物适应性性状演化分子机制提供重要参考。
吴秀红, 汪亚军, 车利锋, 王晓萍. 非编码DNA调控元件在动物适应性性状演化中的研究进展[J]. 遗传, 2024, 46(12): 995-1016.
Xiuhong Wu, Yajun Wang, Lifeng Che, Xiaoping Wang. Research progresses on non-coding DNA regulatory elements in the evolution of animal adaptive traits[J]. Hereditas(Beijing), 2024, 46(12): 995-1016.
表1
非编码DNA调控元件与动物适应性性状研究汇总"
适应性状 | 研究对象 | 适应性状特征 | 主要研究方法 | 非编码DNA 调控元件 | 基因/通路 | 参考 文献 |
---|---|---|---|---|---|---|
动物附肢适应性状 | 三刺鱼(Gasterosteus aculeatus) | 骨盆刺退化 | 全基因组连锁图谱、转基因实验 | CRE | Pitx1 | [ |
小鳐鱼(Leucoraja erinacea) | 翼状鳍 | 比较基因组、RNA-seq、HiChIP、ATAC-seq | CRE | Hoxa1/Hoxa2 | [ | |
非洲肺鱼(Protopterus annectens) | 五趾肢起源 | 比较基因组、RNA-seq | CNE | Hoxa11 | [ | |
非洲肺鱼(Protopterus annectens) 南美洲肺鱼 (Lepidosiren paradoxa) 澳州肺鱼(Neoceratodus forsteri) | 远端鳞状鳍的减少 | 比较基因组、Hi-C | CRE | Shh/SHH | [ | |
蛇类(Serpentiformes) | 四肢退化或丢失 | 比较基因组、转基因实验 | CRE | Shh、Ets1 | [ | |
球蟒(Python regius) | 四肢退化 | RNA原位杂交、转基因实验 | CRE | Shh、HoxD | [ | |
有鳞类(Squamata) | 四肢丢失 | 比较基因组、ATAC-seq、双荧光素酶报告实验 | CNE | Tbx4/Fgf10/ Gli3 | [ | |
平胸总目(Ratitae) | 前肢缩小 | 比较基因组、ATAC-seq、ChIP-seq、电穿孔转化实验 | CNE | Tbx5/Dach1/Pax9 | [ | |
牛(Bos taurus) | 趾退化 | 比较基因组、ChIP-seq | CNE | Ptch1/SHH | [ | |
猪(Sus scrofa) | 趾退化 | 比较基因组、ATAC-seq | CRE | Gli1/SHH | [ | |
短尾蝠(Carollia perspicillata) | 前肢指延长 | 转基因实验、原位杂交、PCR扩增 | CRE | Prx1 | [ | |
纳塔尔长翼蝠(Miniopterus natalensis) | 前肢指延长 | 比较基因组、RNA-seq、ChIP-seq | AR | BMP/FGF/ Wnt-PCP | [ | |
小棕蝠(Myotis lucifugus) | 前肢指延长 | 比较基因组、ChIP-seq、转基因实验 | AR | HoxD | [ | |
长臂猿科(Hylobatidae) | 前肢延长 | 比较基因组、转基因实验 | AR | Dlx5/Emx2 | [ | |
蒙古五趾跳鼠 (Orientallactaga sibirica) | 后肢增大 | 比较基因组、双荧光素酶报告实验 | CNE | Xylt1 | [ | |
动物极端环境适应性状 | 狮尾狒(Theropithecus gelada) | 低氧环境氧化应激适应 | 比较基因组、全基因组群体重测序 | AR | Htatip2/Rcan1/Fbn1 | [ |
绵羊(Ovis aries) | 低氧环境氧化应激适应 | RNA-seq、Hi-C、ATAC-seq | CRE | Limd1/Hippo | [ | |
猎隼(Falco cherrug) | 低氧环境血氧运输适应 | 比较基因组、Hi-C、ATAC-seq | CRE | Hbz/Hbad/ Hba1 | [ | |
非洲鼹鼠(Heterocephalus glaber) | 低氧环境血氧运输适应低氧环境适应 | 比较基因组、ChIP-seq | CNE | Foxpi/MEF | [ | |
南极鱼亚目(Notothenioidei) | 富氧环境血氧运输适应富氧环境适应 | 比较基因组、结节血分析、红细胞形态定量 | CNE | 血红细胞分化相关基因 | [ | |
海洋哺乳动物 | 低温环境体温调节适应 | 比较基因组、ATAC-seq | CNE | 体温调节相关基因 | [ | |
冬眠哺乳动物 | 低温、食物贫乏环境新陈代谢适应 | 比较基因组 | CNE | Mgmt/Qki | [ | |
墨西哥脂鲤(Astyanax mexicanus) | 食物贫乏环境能量代谢适应 | 比较基因组、ChIP-seq、ATAC-seq、RNA-seq | CRE | Hpdb | [ | |
远东鲥鱼(Pseudaspius) | 高渗环境渗透调节适应 | 比较基因组、双荧光素酶报告实验 | CNE | Atg7/Usp45 | [ | |
近江牡蛎(Crassostrea ariakensis) | 高渗环境保水能力适应 | Hi-C、ATAC-seq、双荧光素酶报告实验 | CRE | ManⅡa | [ | |
蒙古五趾跳鼠 (Orientallactaga sibirica) | 干旱环境渗透调节适应 | 比较基因组、双荧光素酶报告实验 | CNE | Ror2 | [ | |
鼹鼠金毛鼹 (Chrysochloris asiatica) 星鼻鼹(Condylura cristata) 裸鼹鼠(Heterocephalus glaber) 盲鼹鼠(Nannospalax galili) | 黑暗环境视觉退化适应 | 比较基因组、ATAC-seq | CNE | Bfsp2/Pax6/ Vista | [ | |
盲鼹鼠(Nannospalax galili) | 黑暗环境视觉退化适应 | 双荧光素酶报告实验、转基因实验、PCR | CNE | Tdrd7 | [ | |
动物其他特殊表型适应性状 | 人猿总科(Hominoidea) | 尾巴丢失 | 比较基因组 | CRE | Kiaa1217 | [ |
袋狼(Thylacinus cynocephalus) 灰狼(Canis lupus) | 颅面结构趋同 | 比较基因组 | CRE | TGF β/BMP | [ | |
蜜袋鼯(Petaurus breviceps) | 翼膜形成 | 比较基因组、ATAC-seq、ChIP-seq、Micro-C | AR | Emx2 | [ | |
反刍亚目(Ruminantia) | 鹿角再生 | 比较基因组、RNA-seq | CNE | Runx2/Sp7 | [ | |
虎尾海马(Hippocampus comes) | 体型变化 | 比较基因组、转基因实验 | CNE | Hox | [ | |
黑妹袖蝶(Heliconius himera) | 黑色花纹 | 转基因实验、ATAC-seq、Hi-C | CRE | WntA | [ | |
艺神袖蝶(Heliconius erato) 诗神袖蝶(Heliconius melpomene) | 红色花纹 | 转基因实验、ChIP-seq、Hi-C、ATAC-seq | CRE | Optix | [ | |
艺神袖蝶(Heliconius erato) 诗神袖蝶 (Heliconius melpomene) | 黄色条纹 | 转基因实验、原位杂交、RNA-seq、ATAC-seq | CRE | Cortex | [ |
[1] | Kuderna LFK, Ulirsch JC, Rashid S, Ameen M, Sundaram L, Hickey G, Cox AJ, Gao H, Kumar A, Aguet F, Christmas MJ, Clawson H, Haeussler M, Janiak MC, Kuhlwilm M, Orkin JD, Bataillon T, Manu S, Valenzuela A, Bergman J, Rouselle M, Silva FE, Agueda L, Blanc J, Gut M, de Vries D, Goodhead I, Harris RA, Raveendran M, Jensen A, Chuma IS, Horvath JE, Hvilsom C, Juan D, Frandsen P, Schraiber JG, de Melo FR, Bertuol F, Byrne H, Sampaio I, Farias I, Valsecchi J, Messias M, da Silva MNF, Trivedi M, Rossi R, Hrbek T, Andriaholinirina N, Rabarivola CJ, Zaramody A, Jolly CJ, Phillips-Conroy J, Wilkerson G, Abee C, Simmons JH, Fernandez-Duque E, Kanthaswamy S, Shiferaw F, Wu DD, Zhou L, Shao Y, Zhang GJ, Keyyu JD, Knauf S, Le MD, Lizano E, Merker S, Navarro A, Nadler T, Khor CC, Lee J, Tan P, Lim WK, Kitchener AC, Zinner D, Gut I, Melin AD, Guschanski K, Schierup MH, Beck RMD, Karakikes I, Wang KC, Umapathy G, Roos C, Boubli JP, Siepel A, Kundaje A, Paten B, Lindblad-Toh K, Rogers J, Marques Bonet T, Farh KKH. Identification of constrained sequence elements across 239 primate genomes. Nature, 2024, 625(7996): 735-742. |
[2] | Christmas MJ, Kaplow IM, Genereux DP, Dong MX, Hughes GM, Li X, Sullivan PF, Hindle AG, Andrews G, Armstrong JC, Bianchi M, Breit AM, Diekhans M, Fanter C, Foley NM, Goodman DB, Goodman L, Keough KC, Kirilenko B, Kowalczyk A, Lawless C, Lind AL, Meadows JRS, Moreira LR, Redlich RW, Ryan L, Swofford R, Valenzuela A, Wagner F, Wallerman O, Brown AR, Damas J, Fan KL, Gatesy J, Grimshaw J, Johnson J, Kozyrev SV, Lawler AJ, Marinescu VD, Morrill KM, Osmanski A, Paulat NS, Phan BN, Reilly SK, Schäffer DE, Steiner C, Supple MA, Wilder AP, Wirthlin ME, Xue JR, Zoonomia Consortium, Birren BW, Gazal S, Hubley RM, Koepfli KP, Marques-Bonet T, Meyer WK, Nweeia M, Sabeti PC, Shapiro B, Smit AFA, Springer MS, Teeling EC, Weng ZP, Hiller M, Levesque DL, Lewin HA, Murphy WJ, Navarro A, Paten B, Pollard KS, Ray DA, Ruf I, Ryder OA, Pfenning AR, Lindblad-Toh K, Karlsson EK. Evolutionary constraint and innovation across hundreds of placental mammals. Science, 2023, 380(6643): eabn3943. |
[3] |
King MC, Wilson AC. Evolution at two levels in humans and chimpanzees. Science, 1975, 188(4184): 107-116.
pmid: 1090005 |
[4] |
Carroll SB. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell, 2008, 134(1): 25-36.
doi: 10.1016/j.cell.2008.06.030 pmid: 18614008 |
[5] | Wray GA. The evolutionary significance of cis-regulatory mutations. Nat Rev Genet, 2007, 8(3): 206-216. |
[6] | Schmitz RJ, Grotewold E, Stam M. Cis-regulatory sequences in plants: their importance, discovery, and future challenges. Plant Cell, 2022, 34(2): 718-741. |
[7] | Marand AP, Eveland AL, Kaufmann K, Springer NM. Cis-regulatory elements in plant development, adaptation, and evolution. Annu Rev Plant Biol, 2023, 74: 111-137. |
[8] | Yocca AE, Edger PP. Current status and future perspectives on the evolution of cis-regulatory elements in plants. Curr Opin Plant Biol, 2022, 65: 102139. |
[9] |
Polychronopoulos D, King JWD, Nash AJ, Tan G, Lenhard B. Conserved non-coding elements: developmental gene regulation meets genome organization. Nucleic Acids Res, 2017, 45(22): 12611-12624.
doi: 10.1093/nar/gkx1074 pmid: 29121339 |
[10] |
Sackton TB, Grayson P, Cloutier A, Hu ZR, Liu JS, Wheeler NE, Gardner PP, Clarke JA, Baker AJ, Clamp M, Edwards SV. Convergent regulatory evolution and loss of flight in paleognathous birds. Science, 2019, 364(6435): 74-78.
doi: 10.1126/science.aat7244 pmid: 30948549 |
[11] |
Wang K, Wang J, Zhu CL, Yang LD, Ren YD, Ruan J, Fan GY, Hu J, Xu WJ, Bi XP, Zhu YA, Song Y, Chen HT, Ma TT, Zhao RP, Jiang HF, Zhang B, Feng CG, Yuan Y, Gan XN, Li YX, Zeng HH, Liu Q, Zhang YL, Shao F, Hao SJ, Zhang H, Xu X, Liu X, Wang DP, Zhu M, Zhang GJ, Zhao WM, Qiu Q, He SP, Heng W. African lungfish genome sheds light on the vertebrate water-to-land transition. Cell, 2021, 184(5): 1362-1376.e18.
doi: 10.1016/j.cell.2021.01.047 pmid: 33545087 |
[12] | Wirthlin ME, Schmid TA, Elie JE, Zhang XM, Kowalczyk A, Redlich R, Shvareva VA, Rakuljic A, Ji MB, Bhat NS, Kaplow IM, Schäffer DE, Lawler AJ, Wang AZ, Phan BN, Annaldasula S, Brown AR, Lu TY, Lim BK, Azim E, Zoonomia Consortium, Clark NL, Meyer WK, Pond SLK, Chikina M, Yartsev MM, Pfenning AR, Andrews G, Armstrong JC, Bianchi M, Birren BW, Bredemeyer KR, Breit AM, Christmas MJ, Clawson H, Damas J, Di Palma F, Diekhans M, Dong MX, Eizirik E, Fan KL, Fanter C, Foley NM, Forsberg-Nilsson K, Garcia CJ, Gatesy J, Gazal S, Genereux DP, Goodman L, Grimshaw J, Halsey MK, Harris AJ, Hickey G, Hiller M, Hindle AG, Hubley RM, Hughes GM, Johnson J, Juan D, Kaplow IM, Karlsson EK, Keough KC, Kirilenko B, Koepfli KP, Korstian JM, Kowalczyk A, Kozyrev SV, Lawler AJ, Lawless C, Lehmann T, Levesque DL, Lewin HA, Li X, Lind A, Lindblad-Toh K, Mackay-Smith A, Marinescu VD, Marques-Bonet T, Mason VC, Meadows JRS, Meyer WK, Moore JE, Moreira LR, Moreno-Santillan DD, Morrill KM, Muntané G, Murphy WJ, Navarro A, Nweeia M, Ortmann S, Osmanski A, Paten B, Paulat NS, Pfenning AR, Phan BN, Pollard KS, Pratt HE, Ray DA, Reilly SK, Rosen JR, Ruf I, Ryan L, Ryder OA, Sabeti PC, Schäffer DE, Serres A, Shapiro B, Smit AFA, Springer M, Srinivasan C, Steiner C, Storer JM, Sullivan KAM, Sullivan PF, Sundstrom E, Supple MA, Swofford R, Talbot JE, Teeling E, Turner-Maier J, Valenzuela A, Wagner F, Wallerman O, Wang C, Wang JH, Weng ZP, Wilder AP, Wirthlin ME, Xue JR, Zhang XM. Vocal learning-associated convergent evolution in mammalian proteins and regulatory elements. Science, 2024, 383(6690): eabn3263. |
[13] |
Van Belleghem SM, Ruggieri AA, Concha C, Livraghi L, Hebberecht L, Rivera ES, Ogilvie JG, Hanly JJ, Warren IA, Planas S, Ortiz-Ruiz Y, Reed R, Lewis JJ, Jiggins CD, Counterman BA, Mcmillan WO, Papa R. High level of novelty under the hood of convergent evolution. Science, 2023, 379(6636): 1043-1049.
doi: 10.1126/science.ade0004 pmid: 36893249 |
[14] | Wang Z, Peng CJ, Wu W, Yan CC, Lv YY, Li JT. Developmental regulation of conserved non-coding element evolution provides insights into limb loss in squamates. Sci China Life Sci, 2023, 66(10): 2399-2414. |
[15] | Snetkova V, Pennacchio LA, Visel A, Dickel DE. Perfect and imperfect views of ultraconserved sequences. Nat Rev Genet, 2022, 23(3): 182-194. |
[16] | Bi XP, Zhou L, Zhang JJ, Feng SH, Hu M, Cooper DN, Lin JW, Li JL, Wu DD, Zhang GJ. Lineage-specific accelerated sequences underlying primate evolution. Sci Adv, 2023, 9(22): eadc9507. |
[17] | Zhuang XL, Zhang JJ, Shao Y, Ye YX, Chen CY, Zhou L, Wang ZB, Luo X, Su B, Yao YG, Cooper DN, Hu BX, Wang L, Qi XG, Lin JW, Zhang GJ, Wang W, Sheng NY, Wu DD. Integrative omics reveals rapidly evolving regulatory requences driving primate brain evolution. Mol Biol Evol, 2023, 40(8): msad173. |
[18] |
Cahill JA, Armstrong J, Deran A, Khoury CJ, Paten B, Haussler D, Jarvis ED. Positive selection in noncoding genomic regions of vocal learning birds is associated with genes implicated in vocal learning and speech functions in humans. Genome Res, 2021, 31(11): 2035-2049.
doi: 10.1101/gr.275989.121 pmid: 34667117 |
[19] |
Ferris E, Abegglen LM, Schiffman JD, Gregg C. Accelerated evolution in distinctive species reveals candidate elements for clinically relevant traits, including mutation and cancer resistance. Cell Rep, 2018, 22(10): 2742-2755.
doi: S2211-1247(18)30176-1 pmid: 29514101 |
[20] |
Blayney JW, Francis H, Rampasekova A, Camellato B, Mitchell L, Stolper R, Cornell L, Babbs C, Boeke JD, Higgs DR, Kassouf M. Super-enhancers include classical enhancers and facilitators to fully activate gene expression. Cell, 2023, 186(26): 5826-5839.e18.
doi: 10.1016/j.cell.2023.11.030 pmid: 38101409 |
[21] |
Elgar G, Vavouri T. Tuning in to the signals: noncoding sequence conservation in vertebrate genomes. Trends Genet, 2008, 24(7): 344-352.
doi: 10.1016/j.tig.2008.04.005 pmid: 18514361 |
[22] | Andrews G, Fan KL, Pratt HE, Phalke N, Zoonomia Consortium, Karlsson EK, Lindblad-Toh K, Gazal S, Moore JE, Weng ZP. Mammalian evolution of human cis-regulatory elements and transcription factor binding sites. Science, 2023, 380(6643): eabn7930. |
[23] | Ufer C. The biology of the RNA binding protein guanine-rich sequence binding factor 1. Curr Protein Pept Sci, 2012, 13(4): 347-357. |
[24] |
Long HK, Prescott SL, Wysocka J. Ever-changing landscapes: transcriptional enhancers in development and evolution. Cell, 2016, 167(5): 1170-1187.
doi: S0092-8674(16)31251-X pmid: 27863239 |
[25] |
Lambert SA, Jolma A, Campitelli LF, Das PK, Yin YM, Albu M, Chen XT, Taipale J, Hughes TR, Weirauch MT. The human transcription factors. Cell, 2018, 172(4): 650-665.
doi: S0092-8674(18)30106-5 pmid: 29425488 |
[26] | Ptashne M, Gann A. Transcriptional activation by recruitment. Nature, 1997, 386(6625): 569-577. |
[27] | Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 2012, 485(7398): 376-380. |
[28] | Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, Van Berkum NL, Meisig J, Sedat J, Gribnau J, Barillot E, Blüthgen N, Dekker J, Heard E. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature, 2012, 485(7398): 381-385. |
[29] | Shen Y, Yue F, Mccleary DF, Ye Z, Edsall L, Kuan S, Wagner U, Dixon J, Lee L, Lobanenkov VV, Ren B. A map of the cis-regulatory sequences in the mouse genome. Nature, 2012, 488(7409): 116-120. |
[30] |
Symmons O, Uslu VV, Tsujimura T, Ruf S, Nassari S, Schwarzer W, Ettwiller L, Spitz F. Functional and topological characteristics of mammalian regulatory domains. Genome Res, 2014, 24(3): 390-400.
doi: 10.1101/gr.163519.113 pmid: 24398455 |
[31] | Wu HJ, Landshammer A, Stamenova EK, Bolondi A, Kretzmer H, Meissner A, Michor F. Topological isolation of developmental regulators in mammalian genomes. Nat Commun, 2021, 12(1): 4897. |
[32] |
Zhou BT, Hu P, Liu GC, Chang Z, Dong ZW, Li ZH, Yin Y, Tian ZZ, Han G, Wang W, Li XY. Evolutionary patterns and functional effects of 3D chromatin structures in butterflies with extensive genome rearrangements. Nat Commun, 2024, 15(1): 6303.
doi: 10.1038/s41467-024-50529-0 pmid: 39060230 |
[33] |
Chakraborty S, Kopitchinski N, Zuo ZY, Eraso A, Awasthi P, Chari R, Mitra A, Tobias IC, Moorthy SD, Dale RK, Mitchell JA, Petros TJ, Rocha PP. Enhancer- promoter interactions can bypass CTCF-mediated boundaries and contribute to phenotypic robustness. Nat Genet, 2023, 55(2): 280-290.
doi: 10.1038/s41588-022-01295-6 pmid: 36717694 |
[34] | Hung TC, Kingsley DM, Boettiger AN. Boundary stacking interactions enable cross-TAD enhancer- promoter communication during limb development. Nat Genet, 2024, 56(2): 306-314. |
[35] | Yang JH, Hansen AS. Enhancer selectivity in space and time: from enhancer-promoter interactions to promoter activation. Nat Rev Mol Cell Biol, 2024, 25(7): 574-591. |
[36] |
Panigrahi A, O'malley BW. Mechanisms of enhancer action: the known and the unknown. Genome Biol, 2021, 22(1): 108.
doi: 10.1186/s13059-021-02322-1 pmid: 33858480 |
[37] |
Antal CE, Oh TG, Aigner S, Luo EC, Yee BA, Campos T, Tiriac H, Rothamel KL, Cheng Z, Jiao H, Wang A, Hah N, Lenkiewicz E, Lumibao JC, Truitt ML, Estepa G, Banayo E, Bashi S, Esparza E, Munoz RM, Diedrich JK, Sodir NM, Mueller JR, Fraser CR, Borazanci E, Propper D, Von Hoff DD, Liddle C, Yu RT, Atkins AR, Han HY, Lowy AM, Barrett MT, Engle DD, Evan GI, Yeo GW, Downes M, Evans RM. A super-enhancer-regulated RNA-binding protein cascade drives pancreatic cancer. Nat Commun, 2023, 14(1): 5195.
doi: 10.1038/s41467-023-40798-6 pmid: 37673892 |
[38] |
Liu Y, Ding B, Zheng LN, Xu P, Liu ZH, Chen Z, Wu PY, Zhao Y, Pan Q, Guo Y, Wang W, Wei WS. Regulatory elements can be essential for maintaining broad chromatin organization and cell viability. Nucleic Acids Res, 2022, 50(8): 4340-4354.
doi: 10.1093/nar/gkac197 pmid: 35390162 |
[39] | Polly PD. Limbs in mammalian evolution. In: Hull BK, ed. Fins into Limbs: Evolution, Development, and Transformation. Chicago: University of Chicago Press, 2007, 245-268. |
[40] |
Sheeba CJ, Andrade RP, Palmeirim I. Getting a handle on embryo limb development: molecular interactions driving limb outgrowth and patterning. Semin Cell Dev Biol, 2016, 49: 92-101.
doi: 10.1016/j.semcdb.2015.01.007 pmid: 25617599 |
[41] |
Petit F, Sears KE, Ahituv N. Limb development: a paradigm of gene regulation. Nat Rev Genet, 2017, 18(4): 245-258.
doi: 10.1038/nrg.2016.167 pmid: 28163321 |
[42] |
Harfe BD, Scherz PJ, Nissim S, Tian H, Mcmahon AP, Tabin CJ. Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell, 2004, 118(4): 517-528.
doi: 10.1016/j.cell.2004.07.024 pmid: 15315763 |
[43] | Sun X, Mariani FV, Martin GR. Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature, 2002, 418(6897): 501-508. |
[44] |
Ten Berge D, Brugmann SA, Helms JA, Nusse R. Wnt and FGF signals interact to coordinate growth with cell fate specification during limb development. Development, 2008, 135(19): 3247-3257.
doi: 10.1242/dev.023176 pmid: 18776145 |
[45] | Qi FY, Shi P. Advances in vertebrate appendage development and its evolutionary mechanism. Chin Sci Bull, 2016, 61(32): 3413-3419. |
祁飞燕, 施鹏. 脊椎动物附肢发育及进化机制的研究进展. 科学通报, 2016, 61(32): 3413-3419. | |
[46] |
Handschuh K, Feenstra J, Koss M, Ferretti E, Risolino M, Zewdu R, Sahai MA, Bénazet JD, Peng XP, Depew MJ, Quintana L, Sharpe J, Wang BL, Alcorn H, Rivi R, Butcher S, Manak JR, Vaccari T, Weinstein H, Anderson KV, Lacy E, Selleri L. ESCRT-II/Vps25 constrains digit number by endosome-mediated selective modulation of FGF-SHH signaling. Cell Rep, 2014, 9(2): 674-687.
doi: 10.1016/j.celrep.2014.09.019 pmid: 25373905 |
[47] |
Lopez-Rios J, Speziale D, Robay D, Scotti M, Osterwalder M, Nusspaumer G, Galli A, Holländer GA, Kmita M, Zeller R. GLI3 constrains digit number by controlling both progenitor proliferation and BMP- dependent exit to chondrogenesis. Dev Cell, 2012, 22(4): 837-848.
doi: 10.1016/j.devcel.2012.01.006 pmid: 22465667 |
[48] |
Lu PF, Minowada G, Martin GR. Increasing Fgf4 expression in the mouse limb bud causes polysyndactyly and rescues the skeletal defects that result from loss of Fgf8 function. Development, 2006, 133(1): 33-42.
pmid: 16308330 |
[49] | Cohn MJ, Tickle C. Developmental basis of limblessness and axial patterning in snakes. Nature, 1999, 399(6735): 474-479. |
[50] | Minchey SG, Menke DB. Developmental evolution: downsizing wings in the flightless emu. Curr Biol, 2019, 29(21): R1131-R1133. |
[51] |
Nolte MJ, Wang Y, Deng JM, Swinton PG, Wei CM, Guindani M, Schwartz RJ, Behringer RR. Functional analysis of limb transcriptional enhancers in the mouse. Evol Dev, 2014, 16(4): 207-223.
doi: 10.1111/ede.12084 pmid: 24920384 |
[52] |
Bell MA, Orti G, Walker JA, Koenings JP. Evolution of pelvic reduction in threespine stickleback fish: a test of competing hypotheses. Evolution, 1993, 47(3): 906-914.
doi: 10.1111/j.1558-5646.1993.tb01243.x pmid: 28567888 |
[53] | Shapiro MD, Marks ME, Peichel CL, Blackman BK, Nereng KS, Jónsson B, Schluter D, Kingsley DM. Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature, 2004, 428(6984): 717-723. |
[54] |
Chan YF, Marks ME, Jones FC, Villarreal G, Shapiro MD, Brady SD, Southwick AM, Absher DM, Grimwood J, Schmutz J, Myers RM, Petrov D, Jónsson B, Schluter D, Bell MA, Kingsley DM. Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science, 2010, 327(5963): 302-305.
doi: 10.1126/science.1182213 pmid: 20007865 |
[55] | Marlétaz F, De La Calle-Mustienes E, Acemel RD, Paliou C, Naranjo S, Martínez-García PM, Cases I, Sleight VA, Hirschberger C, Marcet-Houben M, Navon D, Andrescavage A, Skvortsova K, Duckett PE, González-Rajal Á, Bogdanovic O, Gibcus JH, Yang LY, Gallardo-Fuentes L, Sospedra I, Lopez-Rios J, Darbellay F, Visel A, Dekker J, Shubin N, Gabaldón T, Nakamura T, Tena JJ, Lupiáñez DG, Rokhsar DS, Gómez-Skarmeta JL. The little skate genome and the evolutionary emergence of wing-like fins. Nature, 2023, 616(7957): 495-503. |
[56] | Zhang XJ, Zhu YJ, Ding M, Gui JF. How do fins and limbs develop and evolve? Chin Sci Bull, 2017, 62(22): 2453-2464. |
张晓娟, 朱要军, 丁苗, 桂建芳. 鳍与四肢如何发育和演化? 科学通报, 2017, 62(22): 2453-2464. | |
[57] | Boisvert CA, Mark-Kurik E, Ahlberg PE. The pectoral fin of Panderichthys and the origin of digits. Nature, 2008, 456(7222): 636-638. |
[58] | Woltering JM, Irisarri I, Ericsson R, Joss JMP, Sordino P, Meyer A. Sarcopterygian fin ontogeny elucidates the origin of hands with digits. Sci Adv, 2020, 6(34): eabc3510. |
[59] | Meyer A, Schloissnig S, Franchini P, Du K, Woltering JM, Irisarri I, Wong WY, Nowoshilow S, Kneitz S, Kawaguchi A, Fabrizius A, Xiong PW, Dechaud C, Spaink HP, Volff JN, Simakov O, Burmester T, Tanaka EM, Schartl M. Giant lungfish genome elucidates the conquest of land by vertebrates. Nature, 2021, 590(7845): 284-289. |
[60] | Kherdjemil Y, Lalonde RL, Sheth R, Dumouchel A, De Martino G, Pineault KM, Wellik DM, Stadler HS, Akimenko MA, Kmita M. Evolution of Hoxa11 regulation in vertebrates is linked to the pentadactyl state. Nature, 2016, 539(7627): 89-92. |
[61] | Schartl M, Woltering JM, Irisarri I, Du K, Kneitz S, Pippel M, Brown T, Franchini P, Li J, Li M, Adolfi M, Winkler S, De Freitas Sousa J, Chen ZX, Jacinto S, Kvon EZ, De Oliveira LRC, Monteiro E, Baia Amaral D, Burmester T, Chalopin D, Suh A, Myers E, Simakov O, Schneider I, Meyer A. The genomes of all lungfish inform on genome expansion and tetrapod evolution. Nature, 2024, 634(8032): 96-103. |
[62] | Letelier J, Naranjo S, Sospedra-Arrufat I, Martinez- Morales JR, Lopez-Rios J, Shubin N, Gómez-Skarmeta JL. The Shh/ Gli3 gene regulatory network precedes the origin of paired fins and reveals the deep homology between distal fins and digits. Proc Natl Acad Sci USA, 2021, 118(46): e2100575118. |
[63] |
O'malley MA, Wideman JG, Ruiz-Trillo I. Losing complexity: the role of simplification in macroevolution. Trends Ecol Evol, 2016, 31(8): 608-621.
doi: S0169-5347(16)30038-6 pmid: 27212432 |
[64] |
Pyron RA, Burbrink FT, Wiens JJ. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol Biol, 2013, 13: 93.
doi: 10.1186/1471-2148-13-93 pmid: 23627680 |
[65] |
Zheng YC, Wiens JJ. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol Phylogenet Evol, 2016, 94(Pt B):537-547.
doi: S1055-7903(15)00312-7 pmid: 26475614 |
[66] | Sagai T, Masuya H, Tamura M, Shimizu K, Yada Y, Wakana S, Gondo Y, Noda T, Shiroishi T. Phylogenetic conservation of a limb-specific, cis-acting regulator of Sonic hedgehog (Shh). Mamm Genome, 2004, 15(1): 23-34. |
[67] | Kvon EZ, Kamneva OK, Melo US, Barozzi I, Osterwalder M, Mannion BJ, Tissières V, Pickle CS, Plajzer-Frick I, Lee EA, Kato M, Garvin TH, Akiyama JA, Afzal V, Lopez-Rios J, Rubin EM, Dickel DE, Pennacchio LA, Visel A. Progressive loss of function in a limb enhancer during snake evolution. Cell, 2016, 167(3): 633-642.e11. |
[68] |
Leal F, Cohn MJ. Loss and re-emergence of legs in snakes by modular evolution of sonic hedgehog and HoxD enhancers. Curr Biol, 2016, 26(21): 2966-2973.
doi: S0960-9822(16)31069-7 pmid: 27773569 |
[69] |
Peng CJ, Wu DD, Ren JL, Peng ZL, Ma ZF, Wu W, Lv YY, Wang Z, Deng C, Jiang K, Parkinson CL, Qi Y, Zhang ZY, Li JT. Large-scale snake genome analyses provide insights into vertebrate development. Cell, 2023, 186(16): 3519.
doi: 10.1016/j.cell.2023.06.021 pmid: 37541200 |
[70] |
Bickley SRB, Logan MPO. Regulatory modulation of the T-box gene Tbx5 links development, evolution, and adaptation of the sternum. Proc Natl Acad Sci USA, 2014, 111(50): 17917-17922.
doi: 10.1073/pnas.1409913111 pmid: 25468972 |
[71] | Houde P. Ostrich ancestors found in the Northern Hemisphere suggest new hypothesis of ratite origins. Nature, 1986, 324(6097): 563-565. |
[72] | Zachos FE. The evolution of Artiodactyls. Mamm Biol, 2009, 74(6): 514-515. |
[73] | Lopez-Rios J, Duchesne A, Speziale D, Andrey G, Peterson KA, Germann P, Unal E, Liu J, Floriot S, Barbey S, Gallard Y, Müller-Gerbl M, Courtney AD, Klopp C, Rodriguez S, Ivanek R, Beisel C, Wicking C, Iber D, Robert B, Mcmahon AP, Duboule D, Zeller R. Attenuated sensing of SHH by Ptch1 underlies evolution of bovine limbs. Nature, 2014, 511(7507): 46-51. |
[74] | Tissières V, Geier F, Kessler B, Wolf E, Zeller R, Lopez-Rios J. Gene regulatory and expression differences between mouse and pig limb buds provide insights into the evolutionary emergence of artiodactyl traits. Cell Rep, 2020, 31(1): 107490. |
[75] | Cretekos CJ, Wang Y, Green ED, Martin JF, Rasweiler JJ, Behringer RR. Regulatory divergence modifies limb length between mammals. Genes Dev, 2008, 22(2): 141-151. |
[76] | Martin JF, Bradley A, Olson EN. The paired-like homeo box gene MHox is required for early events of skeletogenesis in multiple lineages. Genes Dev, 1995, 9(10): 1237-1249. |
[77] |
Eckalbar WL, Schlebusch SA, Mason MK, Gill Z, Parker AV, Booker BM, Nishizaki S, Muswamba-Nday C, Terhune E, Nevonen KA, Makki N, Friedrich T, Vandermeer JE, Pollard KS, Carbone L, Wall JD, Illing N, Ahituv N. Transcriptomic and epigenomic characterization of the developing bat wing. Nat Genet, 2016, 48(5): 528-536.
doi: 10.1038/ng.3537 pmid: 27019111 |
[78] | Booker BM, Friedrich T, Mason MK, Vandermeer JE, Zhao JJ, Eckalbar WL, Logan M, Illing N, Pollard KS, Ahituv N. Bat accelerated regions identify a bat forelimb specific enhancer in the HoxD locus. PLoS Genet, 2016, 12(3): e1005738. |
[79] | Robledo RF, Rajan L, Li X, Lufkin T. The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. Genes Dev, 2002, 16(9): 1089-1101. |
[80] |
Chai SM, Chong YJ, Yin DQ, Qiu Q, Xu SX, Yang G. Genomic insights into adaptation to bipedal saltation and desert-like habitats of jerboas. Sci China Life Sci, 2024, 67(9): 2003-2015.
doi: 10.1007/s11427-023-2516-9 pmid: 38902451 |
[81] |
Mis EK, Liem KF, Kong Y, Schwartz NB, Domowicz M, Weatherbee SD. Forward genetics defines Xylt1 as a key, conserved regulator of early chondrocyte maturation and skeletal length. Dev Biol, 2014, 385(1): 67-82.
doi: 10.1016/j.ydbio.2013.10.014 pmid: 24161523 |
[82] |
Li WM, Du J, Yang LY, Liang QQ, Yang MY, Zhou XM, Du WG. Chromosome-level genome assembly and population genomics of Mongolian racerunner (Eremias argus) provide insights into high-altitude adaptation in lizards. Bmc Biol, 2023, 21(1): 40.
doi: 10.1186/s12915-023-01535-z pmid: 36803146 |
[83] | Feijó A, Ge DY, Wen ZX, Xia L, Yang QS. Divergent adaptations in resource-use traits explain how pikas thrive on the roof of the world. Funct Ecol, 2020, 34(9): 1826-1838. |
[84] |
Hao Y, Lei FM. Genetic mechanism of adaptive evolution: the example of adaptation to high altitudes. Hereditas(Beijing), 2022, 44(8): 635-654.
doi: 10.16288/j.yczz.22-108 pmid: 36384664 |
郝艳, 雷富民. 适应性演化的分子遗传机制:以高海拔适应为例. 遗传, 2022, 44(8): 635-654. | |
[85] |
Chiou KL, Janiak MC, Schneider-Crease IA, Sen S, Ayele F, Chuma IS, Knauf S, Lemma A, Signore AV, D'ippolito AM, Abebe B, Haile AA, Kebede F, Fashing PJ, Nguyen N, Mccann C, Houck ML, Wall JD, Burrell AS, Bergey CM, Rogers J, Phillips-Conroy JE, Jolly CJ, Melin AD, Storz JF, Lu A, Beehner JC, Bergman TJ, Snyder-Mackler N. Genomic signatures of high-altitude adaptation and chromosomal polymorphism in geladas. Nat Ecol Evol, 2022, 6(5): 630-643.
doi: 10.1038/s41559-022-01703-4 pmid: 35332281 |
[86] |
Yan Z, Yang J, Wei WT, Zhou ML, Mo DX, Wan X, Ma R, Wu MM, Huang JH, Liu YJ, Lv FH, Li MH. A time-resolved multi-omics atlas of transcriptional regulation in response to high-altitude hypoxia across whole-body tissues. Nat Commun, 2024, 15(1): 3970.
doi: 10.1038/s41467-024-48261-w pmid: 38730227 |
[87] |
Hu L, Long J, Lin Y, Gu ZR, Su H, Dong XM, Lin ZZ, Xiao Q, Batbayar N, Bold B, Deutschová L, Ganusevich S, Sokolov V, Sokolov A, Patel HR, Waters PD, Graves JAM, Dixon A, Pan SK, Zhan XJ. Arctic introgression and chromatin regulation facilitated rapid Qinghai-Tibet Plateau colonization by an avian predator. Nat Commun, 2022, 13(1): 6413.
doi: 10.1038/s41467-022-34138-3 pmid: 36302769 |
[88] | Parey E, Fernandez-Aroca D, Frost S, Uribarren A, Park TJ, Zöttl M, St John Smith E, Berthelot C, Villar D. Phylogenetic modeling of enhancer shifts in African mole-rats reveals regulatory changes associated with tissue-specific traits. Genome Res, 2023, 33(9): 1513-1526. |
[89] | Kunzmann A. Blood Physiology and Ecological Consequences in Weddell Sea Fishes. 1991. |
[90] | Daane JM, Auvinet J, Stoebenau A, Yergeau D, Harris MP, Detrich HW. Developmental constraint shaped genome evolution and erythrocyte loss in Antarctic fishes following paleoclimate change. PLoS Genet, 2020, 16(10): e1009173. |
[91] | Yuan Y, Zhang YL, Zhang PJ, Liu C, Wang JH, Gao HY, Hoelzel AR, Seim I, Lv MQ, Lin ML, Dong LJ, Gao HY, Yang ZX, Caruso F, Lin WZ, Da Fonseca RR, Wang D, Wang XY, Rasmussen MH, Liu MM, Zheng JS, Zhao LY, Campos PF, Kang H, Iversen M, Song Y, Guo XY, Guo J, Qin YT, Pan SS, Xu QW, Meng LF, Yunga A, Liu SS, Lee SMY, Liu X, Xu X, Yang HM, Fan GY, Wang K, Li SH. Comparative genomics provides insights into the aquatic adaptations of mammals. Proc Natl Acad Sci USA, 2021, 118(37): e2106080118. |
[92] | Boyer BB, Barnes BM. Molecular and Metabolic Aspects of Mammalian Hibernation: expression of the hibernation phenotype results from the coordinated regulation of multiple physiological and molecular events during preparation for and entry into torpor. BioSci, 1999, 49(9): 713-724. |
[93] |
Nakayama D, Makino T. Convergent accelerated evolution of mammal-specific conserved non-coding elements in hibernators. Sci Rep, 2024, 14(1): 11754.
doi: 10.1038/s41598-024-62455-8 pmid: 38782990 |
[94] |
Krishnan J, Seidel CW, Zhang N, Singh NP, Vancampen J, Peuß R, Xiong SL, Kenzior A, Li H, Conaway JW, Rohner N. Genome-wide analysis of cis-regulatory changes underlying metabolic adaptation of cavefish. Nat Genet, 2022, 54(5): 684-693.
doi: 10.1038/s41588-022-01049-4 pmid: 35551306 |
[95] |
Tan M, Armbruster JW. Phylogenetic classification of extant genera of fishes of the order Cypriniformes (Teleostei: Ostariophysi). Zootaxa, 2018, 4476(1): 6-39.
doi: 10.11646/zootaxa.4476.1.4 pmid: 30313339 |
[96] |
Wang Y, Zhang XJ, Wang J, Wang C, Xiong F, Qian YT, Meng MH, Zhou M, Chen WJ, Ding ZF, Yu D, Liu Y, Chang YM, He SP, Yang LD. Genomic insights into the seawater adaptation in Cyprinidae. BMC Biol, 2024, 22(1): 87.
doi: 10.1186/s12915-024-01885-2 pmid: 38637780 |
[97] | Li A, Zhao MJ, Zhang ZY, Wang CG, Zhang KX, Zhang X, De Wit PR, Wang W, Gao JT, Guo XM, Zhang GF, Li L. Genome architecture and selective signals compensatorily shape plastic response to a new environment. Innovation (Camb), 2023, 4(4): 100464. |
[98] |
Roscito JG, Sameith K, Parra G, Langer BE, Petzold A, Moebius C, Bickle M, Rodrigues MT, Hiller M. Phenotype loss is associated with widespread divergence of the gene regulatory landscape in evolution. Nat Commun, 2018, 9(1): 4737.
doi: 10.1038/s41467-018-07122-z pmid: 30413698 |
[99] | Roscito JG, Subramanian K, Naumann R, Sarov M, Shevchenko A, Bogdanova A, Kurth T, Foerster L, Kreysing M, Hiller M. Recapitulating evolutionary divergence in a single cis-regulatory element is sufficient to cause expression changes of the lens gene Tdrd7. Mol Biol Evol, 2021, 38(2): 380-392. |
[100] |
Shao Y, Zhou L, Li F, Zhao L, Zhang BL, Shao F, Chen JW, Chen CY, Bi XP, Zhuang XL, Zhu HL, Hu J, Sun ZY, Li X, Wang DP, Rivas-González I, Wang S, Wang YM, Chen W, Li G, Lu HM, Liu Y, Kuderna LFK, Farh KKH, Fan PF, Yu L, Li M, Liu ZJ, Tiley GP, Yoder AD, Roos C, Hayakawa T, Marques-Bonet T, Rogers J, Stenson PD, Cooper DN, Schierup MH, Yao YG, Zhang YP, Wang W, Qi XG, Zhang GJ, Wu DD. Phylogenomic analyses provide insights into primate evolution. Science, 2023, 380(6648): 913-924.
doi: 10.1126/science.abn6919 pmid: 37262173 |
[101] | Feigin CY, Newton AH, Pask AJ. Widespread cis-regulatory convergence between the extinct Tasmanian tiger and gray wolf. Genome Res, 2019, 29(10): 1648-1658. |
[102] | Moreno JA, Dudchenko O, Feigin CY, Mereby SA, Chen ZX, Ramos R, Almet AA, Sen H, Brack BJ, Johnson MR, Li S, Wang W, Gaska JM, Ploss A, Weisz D, Omer AD, Yao WJ, Colaric Z, Kaur P, Leger JS, Nie Q, Mena A, Flanagan JP, Keller G, Sanger T, Ostrow B, Plikus MV, Kvon EZ, Aiden EL, Mallarino R. Emx2 underlies the development and evolution of marsupial gliding membranes. Nature, 2024, 629(8010): 127-135. |
[103] |
Qin T, Zhang GK, Zheng Y, Li SY, Yuan Y, Li QJ, Hu ML, Si HZ, Wei GN, Gao XL, Cui XX, Xia B, Ren J, Wang K, Ba HX, Liu Z, Heller R, Li ZP, Wang W, Huang JH, Li CY, Qiu Q. A population of stem cells with strong regenerative potential discovered in deer antlers. Science, 2023, 379(6634): 840-847.
doi: 10.1126/science.add0488 pmid: 36821675 |
[104] | Chen L, Qiu Q, Jiang Y, Wang K, Lin ZS, Li ZP, Bibi F, Yang YZ, Wang JH, Nie WH, Su WT, Liu GC, Li QY, Fu WW, Pan XY, Liu C, Yang J, Zhang CZ, Yin Y, Wang Y, Zhao Y, Zhang C, Wang ZK, Qin YL, Liu W, Wang B, Ren YD, Zhang R, Zeng Y, Da Fonseca RR, Wei B, Li R, Wan WT, Zhao RP, Zhu WB, Wang YT, Duan SC, Gao Y, Zhang YE, Chen CY, Hvilsom C, Epps CW, Chemnick LG, Dong Y, Mirarab S, Siegismund HR, Ryder OA, Gilbert MTP, Lewin HA, Zhang GJ, Heller R, Wang W. Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science, 2019, 364(6446): eaav6202. |
[105] | Lin Q, Fan SH, Zhang YH, Xu M, Zhang HX, Yang YL, Lee AP, Woltering JM, Ravi V, Gunter HM, Luo W, Gao ZX, Lim ZW, Qin G, Schneider RF, Wang X, Xiong PW, Li G, Wang K, Min JM, Zhang C, Qiu Y, Bai J, He WM, Bian C, Zhang XH, Shan D, Qu HY, Sun Y, Gao Q, Huang LM, Shi Q, Meyer A, Venkatesh B. The seahorse genome and the evolution of its specialized morphology. Nature, 2016, 540(7633): 395-399. |
[106] |
Martin A, Papa R, Nadeau NJ, Hill RI, Counterman BA, Halder G, Jiggins CD, Kronforst MR, Long AD, Mcmillan WO, Reed RD. Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand. Proc Natl Acad Sci USA, 2012, 109(31): 12632-12637.
doi: 10.1073/pnas.1204800109 pmid: 22802635 |
[107] |
Reed RD, Papa R, Martin A, Hines HM, Counterman BA, Pardo-Diaz C, Jiggins CD, Chamberlain NL, Kronforst MR, Chen R, Halder G, Nijhout HF, Mcmillan WO. optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Science, 2011, 333(6046): 1137-1141.
doi: 10.1126/science.1208227 pmid: 21778360 |
[108] | Nadeau NJ, Pardo-Diaz C, Whibley A, Supple MA, Saenko SV, Wallbank RWR, Wu GC, Maroja L, Ferguson L, Hanly JJ, Hines H, Salazar C, Merrill RM, Dowling AJ, Ffrench-Constant RH, Llaurens V, Joron M, Mcmillan WO, Jiggins CD. The gene cortex controls mimicry and crypsis in butterflies and moths. Nature, 2016, 534(7605): 106-110. |
[109] |
Mazo-Vargas A, Concha C, Livraghi L, Massardo D, Wallbank RWR, Zhang LL, Papador JD, Martinez-Najera D, Jiggins CD, Kronforst MR, Breuker CJ, Reed RD, Patel NH, Mcmillan WO, Martin A. Macroevolutionary shifts of WntA function potentiate butterfly wing-pattern diversity. Proc Natl Acad Sci USA, 2017, 114(40): 10701-10706.
doi: 10.1073/pnas.1708149114 pmid: 28923954 |
[110] |
Mazo-Vargas A, Langmuller AM, Wilder A, Van Der Burg KRL, Lewis JJ, Messer PW, Zhang LL, Martin A, Reed RD. Deep cis-regulatory homology of the butterfly wing pattern ground plan. Science, 2022, 378(6617): 304-308.
doi: 10.1126/science.abi9407 pmid: 36264807 |
[111] |
Lewis JJ, Geltman RC, Pollak PC, Rondem KE, Van Belleghem SM, Hubisz MJ, Munn PR, Zhang LL, Benson C, Mazo-Vargas A, Danko CG, Counterman BA, Papa R, Reed RD. Parallel evolution of ancient, pleiotropic enhancers underlies butterfly wing pattern mimicry. Proc Natl Acad Sci USA, 2019, 116(48): 24174-24183.
doi: 10.1073/pnas.1907068116 pmid: 31712408 |
[112] | Livraghi L, Hanly JJ, Van Bellghem SM, Montejo-Kovacevich G, Van Der Heijden ES, Loh LS, Ren A, Warren IA, Lewis JJ, Concha C, Hebberecht L, Wright CJ, Walker JM, Foley J, Goldberg ZH, Arenas-Castro H, Salazar C, Perry MW, Papa R, Martin A, Mcmillan WO, Jiggins CD. Cortex cis-regulatory switches establish scale colour identity and pattern diversity in Heliconius. eLife, 2021, 10: e68549. |
[113] |
Rebeiz M, Tsiantis M. Enhancer evolution and the origins of morphological novelty. Curr Opin Genet Dev, 2017, 45: 115-123.
doi: S0959-437X(16)30132-0 pmid: 28527813 |
[114] | Macphillamy C, Alinejad-Rokny H, Pitchford WS, Low WY. Cross-species enhancer prediction using machine learning. Genomics, 2022, 114(5): 110454. |
[115] | Kaplow IM, Lawler AJ, Schäffer DE, Srinivasan C, Sestili HH, Wirthlin ME, Phan BN, Prasad K, Brown AR, Zhang XM, Foley K, Genereux DP, Zoonomia Consortium, Karlsson EK, Lindblad-Toh K, Meyer WK, Pfenning AR. Relating enhancer genetic variation across mammals to complex phenotypes using machine learning. Science, 2023, 380(6643): eabm7993. |
[116] | Schöpflin R, Melo US, Moeinzadeh H, Heller D, Laupert V, Hertzberg J, Holtgrewe M, Alavi N, Klever MK, Jungnitsch J, Comak E, Türkmen S, Horn D, Duffourd Y, Faivre L, Callier P, Sanlaville D, Zuffardi O, Tenconi R, Kurtas NE, Giglio S, Prager B, Latos-Bielenska A, Vogel I, Bugge M, Tommerup N, Spielmann M, Vitobello A, Kalscheuer VM, Vingron M, Mundlos S. Integration of Hi-C with short and long-read genome sequencing reveals the structure of germline rearranged genomes. Nat Commun, 2022, 13(1): 6470. |
[117] |
Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 2009, 326(5950): 289-293.
doi: 10.1126/science.1181369 pmid: 19815776 |
[118] | ENCODE Project Consortium, Snyder MP, Gingeras TR, Moore JE, Weng ZP, Gerstein MB, Ren B, Hardison RC, Stamatoyannopoulos JA, Graveley BR, Feingold EA, Pazin MJ, Pagan M, Gilchrist DA, Hitz BC, Cherry JM, Bernstein BE, Mendenhall EM, Zerbino DR, Frankish A, Flicek P, Myers RM. Perspectives on ENCODE. Nature, 2020, 583(7818): 693-698. |
[119] | Cooper YA, Teyssier N, Dräger NM, Guo QY, Davis JE, Sattler SM, Yang ZA, Patel A, Wu S, Kosuri S, Coppola G, Kampmann M, Geschwind DH. Functional regulatory variants implicate distinct transcriptional networks in dementia. Science, 2022, 377(6608): eabi8654. |
[120] |
Li YF, Tan MK, Akkari-Henić A, Zhang LM, Kip M, Sun SN, Sepers JJ, Xu NN, Ariyurek Y, Kloet SL, Davis RP, Mikkers H, Gruber JJ, Snyder MP, Li X, Pang BX. Genome-wide Cas9-mediated screening of essential non-coding regulatory elements via libraries of paired single-guide RNAs. Nat Biomed Eng, 2024, 8(7): 890-908.
doi: 10.1038/s41551-024-01204-8 pmid: 38778183 |
[121] | Zhang LH, Zhang J, Nie Q. DIRECT-NET: an efficient method to discover cis-regulatory elements and construct regulatory networks from single-cell multiomics data. Sci Adv, 2022, 8(22): eabl7393. |
[122] | Badia-I-Mompel P, Wessels L, Müller-Dott S, Trimbour R, Ramirez Flores RO, Argelaguet R, Saez-Rodriguez J. Gene regulatory network inference in the era of single-cell multi-omics. Nat Rev Genet, 2023, 24(11): 739-754. |
[123] | Pan XY, Ma ZX, Sun XQ, Li H, Zhang TT, Zhao C, Wang NN, Heller R, Wong WH, Wang W, Jiang Y, Wang Y. CNEReg interprets ruminant-specific conserved non-coding elements by developmental gene regulatory network. Genom Proteom Bioinf, 2023, 21(3): 632-648. |
[1] | 杨敏, 林思远, 杨长淇, 陈瑶生, 何祖勇. SOX9及其增强子在哺乳动物性别决定中的研究进展[J]. 遗传, 2024, 46(9): 677-689. |
[2] | 高林豫, 许琦, 何钰霄, 习海娇, 刘一帆, 张涛, 李金泉, 张燕军, 王瑞军, 吕琦, 梅步俊, 苏蕊, 王志英. 基于多性状模型内蒙古绒山羊早期生长性状基因组预测准确性研究[J]. 遗传, 2024, 46(5): 421-430. |
[3] | 徐晓鹏, 范小英. 单细胞精度的表达数量性状位点研究进展[J]. 遗传, 2024, 46(10): 795-806. |
[4] | 于一凡, 欧阳臻, 郭娟, 赵瑜君, 黄璐琦. 植物质体基因工程调控元件研究进展[J]. 遗传, 2023, 45(6): 501-513. |
[5] | 邢超凡, 王闽涛, 王磊, 申欣. 两侧对称动物左右不对称发生机制研究进展[J]. 遗传, 2023, 45(6): 488-500. |
[6] | 杨阳, 储明星, 刘秋月. 生物钟作用机制及其对动物年节律产生的影响[J]. 遗传, 2023, 45(5): 409-424. |
[7] | 袁萌, 李辉, 王守志. 大规模平行报告基因测定:一种分析基因表达调控的新技术[J]. 遗传, 2023, 45(10): 859-873. |
[8] | 张祉靖, 乔钰, 孙宇晨, 雷蕾. 表观“阅读器”BET蛋白家族对哺乳动物发育和iPSC重编程的调控[J]. 遗传, 2022, 44(1): 36-45. |
[9] | 高珊珊, 李金良, 杨佳妮, 周通, 刘瑞, 王晓萍, 于黎. 哺乳动物滑翔和飞行性状适应性演化研究进展[J]. 遗传, 2022, 44(1): 46-58. |
[10] | 王海涛, 李亭亭, 黄勋, 马润林, 刘秋月. 遗传修饰技术在绵羊分子设计育种中的应用[J]. 遗传, 2021, 43(6): 580-600. |
[11] | 巴恒星, 胡鹏飞, 李春义. 鹿科动物基因组学研究进展[J]. 遗传, 2021, 43(4): 308-322. |
[12] | 文子龙, 赵毅强. 群体遗传学下动物驯化研究进展[J]. 遗传, 2021, 43(3): 226-239. |
[13] | 郑燕森, 卓林刚, 李大力, 刘明耀. 炎性肠病易感基因GPR35在肠炎发生发展中的功能研究[J]. 遗传, 2021, 43(2): 169-181. |
[14] | 徐海冬, 宁博林, 牟芳, 李辉, 王宁. 选择性多聚腺苷酸化的生物学效应及其调控机制研究进展[J]. 遗传, 2021, 43(1): 4-15. |
[15] | 郭佳妮, 刘帆, 王璐. 斑马鱼血液疾病模型及应用[J]. 遗传, 2020, 42(8): 725-738. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: