[1] | Xu XD, Xie QG. The circadian clock in plants. Chin J Nat, 2013, 35(2): 118-126. | [1] | 徐小冬, 谢启光. 植物生物钟研究的历史回顾与最新进展. 自然科学, 2013, 35(2): 118-126. | [2] | Seo PJ, Mas P. STRESSing the role of the plant circadian clock. Trends Plant Sci, 2015, 20(4): 230-237. | [3] | Alabad?? D, Oyama T, Yanovsky MJ, Harmon FG, Más P, Kay SA. Reciprocal regulation between TOC1 and LHY/ CCA1 within theArabidopsis circadian clock. Science, 2001, 293(5531): 880-883. | [4] | Huang W, Pérez-García P, Pokhilko A, Millar AJ, Antoshechkin I, Riechmann JL, Mas P. Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science, 2012, 336(6077): 75-79. | [5] | Gendron JM, Pruneda-Paz JL, Doherty CJ, Gross AM, Kang SE, Kay SA. Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proc Nati Acad Sci USA, 2012, 109(8): 3167-3172. | [6] | Nakamichi N, Kiba T, Henriques R, Mizuno T, Chua NH, Sakakibara H. PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. Plant Cell, 2010, 22(3): 594-605. | [7] | Farré EM, Harmer SL, Harmon FG, Yanovsky MJ, Kay SA. Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr Biol, 2005, 15(1): 47-54. | [8] | Helfer A, Nusinow DA, Chow BY, Gehrke AR, Bulyk ML, Kay SA. LUX ARRHYTHMO encodes a night time repressor of circadian gene expression in the Arabidopsis core clock. Curr Biol, 2011, 21(2): 126-133. | [9] | Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, Schultz TF, Farré EM, Kay SA. The ELF4-ELF3- LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature, 2011, 475(7356): 398-402. | [10] | Hsu PY, Harmer SL. Wheels within wheels: the plant circadian system. Trends Plant Sci, 2014, 19(4): 240-249. | [11] | Millar AJ. The intracellular dynamics of circadian clocks reach for the light of ecology and evolution. Annu Rev Plant Biol, 2016, 67(1): 595-618. | [12] | Gehan MA, Greenham K, Mockler TC, McClung CR. Transcriptional networks-crops, clocks, and abiotic stress. Curr Opin Plant Biol, 2015, 24: 39-46. | [13] | Murakami M, Tago Y, Yamashino T, Mizuno T. Comparative overviews of clock-associated genes of Arabidopsis thaliana and Oryza sativa. Plant Cell Physiol, 2007, 48(1): 110-121. | [14] | Murakami M, Ashikari M, Miura K, Yamashino T, Mizuno T. The evolutionarily conserved Os |
[1] |
胡雅丽, 戴睿, 刘永鑫, 张婧赢, 胡斌, 储成才, 袁怀波, 白洋. 水稻典型品种日本晴和IR24根系微生物组的解析[J]. 遗传, 2020, 42(5): 506-518. |
[2] |
张桂权. 基于SSSL文库的水稻设计育种平台[J]. 遗传, 2019, 41(8): 754-760. |
[3] |
刘次桃, 王威, 毛毕刚, 储成才. 水稻耐低温逆境研究:分子生理机制及育种展望[J]. 遗传, 2018, 40(3): 171-185. |
[4] |
杨德卫, 郑向华, 程朝平, 叶宁, 黄凤凰, 叶新福. 基于CSSLs群体定位和图位克隆水稻长芒基因GAD1-2[J]. 遗传, 2018, 40(12): 1101-1111. |
[5] |
辛高伟, 胡熙璕, 王克剑, 王兴春. Cas9蛋白变体VQR高效识别水稻NGAC前间区序列邻近基序[J]. 遗传, 2018, 40(12): 1112-1119. |
[6] |
吴比, 胡伟, 邢永忠. 中国水稻遗传育种历程与展望[J]. 遗传, 2018, 40(10): 841-857. |
[7] |
韩晓斌, 徐冉, 段朋根, 于海跃, 罗越华, 李云海. 水稻斑点叶突变体spl101和spl102的筛选及候选基因鉴定[J]. 遗传, 2017, 39(4): 346-353. |
[8] |
岳敏, 杨禹, 郭改丽, 秦曦明. 哺乳动物生物钟的遗传和表观遗传研究进展[J]. 遗传, 2017, 39(12): 1122-1137. |
[9] |
唐丽, 李曜魁, 张丹, 毛毕刚, 吕启明, 胡远艺, 韶也, 彭彦, 赵炳然, 夏石头. 基于基因组编辑技术的水稻靶向突变特征及遗传分析[J]. 遗传, 2016, 38(8): 746-755. |
[10] |
武迪, 黄林周, 高谨, 王永红. 植物重力反应的分子调控机制[J]. 遗传, 2016, 38(7): 589-602. |
[11] |
孔德艳, 陈守俊, 周立国, 高欢, 罗利军, 刘灶长. 水稻开花光周期调控相关基因研究进展[J]. 遗传, 2016, 38(6): 532-542. |
[12] |
李莉云,史佳楠,杨烁,孙财强,刘国振. 基于转录特征的水稻WRKY转录因子功能注释[J]. 遗传, 2016, 38(2): 126-136. |
[13] |
张红宇, 崔晓云, 侯飞雪, 王一伊, 吴挺开, 刘禹彤, 杨定乾, 张洪凯, 傅瑶, 张向阳, 李文丽, 吴先军. 水稻基因组加倍对籽粒大小调控基因表达的影响[J]. 遗传, 2016, 38(12): 1102-1111. |
[14] |
宋海冰, 汪斌, 陈壬杰, 郑小雅, 于世波, 兰涛. 水稻“光身”突变体glr3的遗传分析及基因定位[J]. 遗传, 2016, 38(11): 1012-1019. |
[15] |
胡运高, 郭连安, 杨国涛, 钦鹏, 范存留, 彭友林, 严维, 何航, 李仕贵. 直立密穗基因DEP2-1388的遗传分析及在杂交稻中的育种利用[J]. 遗传, 2016, 38(1): 72-81. |
|