[1] | Chua MLK, Wee JTS, Hui EP, Chan ATC . Nasopharyngeal carcinoma. Lancet, 2016,387(10022):1012-1024. [DOI] | [2] | Jiang S, Dong Y . Human papillomavirus and oral squamous cell carcinoma: A review of HPV-positive oral squamous cell carcinoma and possible strategies for future. Curr Probl Cancer, 2017,41(5):323-327. [DOI] | [3] | Stearns FW . One hundred years of pleiotropy: a retrospective. Genetics, 2010,186(3):767-773. [DOI] | [4] | Lee YR, Chen M, Pandolfi PP . The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat Rev Mol Cell Biol, 2018,19(9):547-562. [DOI] | [5] | Newman ME . Modularity and community structure in networks. Proc Natl Acad Sci USA, 2006,103(23):8577-8582. [DOI] | [6] | Clauset A, Newman ME, Moore C . Finding community structure in very large networks. Phys Rev E Stat Nonlin Soft Matter Phys, 2004,70(6 pt 2):66111. [DOI] | [7] | Zhao XL, Zuo XY, Qin JH, Liang Y, Zhang NZ, Luan YZ, Rao SQ . A novel biological pathway expansion method based on the knowledge of protein-protein interactions. Hereditas (Beijing) , 2014,36(04):387-394. | [7] | 赵小蕾, 左晓宇, 覃继恒, 梁岩, 张乃尊, 栾奕昭, 饶绍奇 . 基于蛋白质互作知识的生物学通路扩充新方法. 遗传, 2014,36(4):387-394. [DOI] | [8] | Travers J, Milgram S . An experimental study of the small world problem. Sociometry, 1969,32(4):425-443. [DOI] | [9] | Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW . Pleiotropy in complex traits: challenges and strategies. Nat Rev Genet, 2013,14(7):483-495. [DOI] | [10] | Wang J, Mei F, Gao X, Wang S . Identification of genes involved in Epstein-Barr virus-associated nasopharyngeal carcinoma. Oncol Lett, 2016,12(4):2375-2380. [DOI] | [11] | Kato K, Kawashiri S, Yoshizawa K, Kitahara H, Okamune A, Sugiura S, Noguchi N, Yamamoto E . Expression form of p53 and PCNA at the invasive front in oral squamous cell carcinoma: correlation with clinicopathological features and prognosis. J Oral Pathol Med, 2011,40(9):693-698. [DOI] | [12] | Poosarla C, Ramesh M, Ramesh K, Gudiseva S, Bala S, Sundar M. Proliferating cell nuclear antigen in premalignancy and oral squamous cell carcinoma. J Clin Diagn Res, 2015, 9(6): ZC39-C41. [DOI] | [13] | Madan M, Chandra S, Raj V, Madan R . Evaluation of cell proliferation in malignant and potentially malignant oral lesions. J Oral Maxillofac Pathol, 2015,19(3):297-305. [DOI] | [14] | Zhai X, Yang Y, Wan J, Zhu R, Wu Y . Inhibition of LDH-A by oxamate induces G2/M arrest, apoptosis and increases radiosensitivity in nasopharyngeal carcinoma cells. Oncol Rep, 2013,30(6):2983-2991. [DOI] | [15] | Chen X, Zhang FH, Chen QE, Wang YY, Wang YL, He JC, Zhou J . The clinical significance of CDK1 expression in oral squamous cell carcinoma. Med Oral Patol Oral Cir Bucal, 2015,20(1):e7-e12. [DOI] | [16] | Zhang Y, Liu Z . STAT1 in cancer: friend or foe? Discov Med, 2017,24(130):19-29. [DOI] | [17] | Qu S, Guo Y, Huang ST, Zhu XD . Inhibition of STAT1 sensitizes radioresistant nasopharyngeal carcinoma cell line CNE-2R to radiotherapy. Oncotarget, 2018,9(9):8303-8310. [DOI] | [18] | Laimer K, Spizzo G, Obrist P, Gastl G, Brunhuber T, Schafer G, Norer B, Rasse M, Haffner MC, Doppler W . STAT1 activation in squamous cell cancer of the oral cavity: a potential predictive marker of response to adjuvant chemotherapy. Cancer, 2007,110(2):326-333. [DOI] | [19] | Urata S, Izumi K, Hiratsuka K, Maolake A, Natsagdorj A, Shigehara K, Iwamoto H, Kadomoto S, Makino T, Naito R, Kadono Y, Lin WJ, Wufuer G, Narimoto K, Mizokami A . C-C motif ligand 5 promotes migration of prostate cancer cells in the prostate cancer bone metastasis microenvironment. Cancer Sci, 2018,109(3):724-731. [DOI] | [20] | Kan JY, Wu DC, Yu FJ, Wu CY, Ho YW, Chiu YJ, Jian SF, Hung JY, Wang JY, Kuo PL . Chemokine (C-C motif) ligand 5 is involved in tumor-associated dendritic cell- mediated colon cancer progression through non-coding RNA MALAT-1. J Cell Physiol, 2015,230(8):1883-1894. [DOI] | [21] | Huang CY, Fong YC, Lee CY, Chen MY, Tsai HC, Hsu HC, Tang CH . CCL5 increases lung cancer migration via PI3K, Akt and NF-kappaB pathways. Biochem Pharmacol, 2009,77(5):794-803. [DOI] | [22] | Khalid A, Wolfram J, Ferrari I, Mu C, Mai J, Yang Z, Zhao Y, Ferrari M, Ma X, Shen H . Recent advances in discovering the role of CCL5 in metastatic breast cancer. Mini Rev Med Chem, 2015,15(13):1063-1072. [DOI] | [23] | Ma W, Feng L, Zhang S, Zhang H, Zhang X, Qi X, Zhang Y, Feng Q, Xiang T, Zeng YX . Induction of chemokine (C-C motif) ligand 5 by Epstein-Barr virus infection enhances tumor angiogenesis in nasopharyngeal carcinoma. Cancer Sci, 2018,109(5):1710-1722. [DOI] | [24] | Rao SK, Pavicevic Z, Du Z, Kim JG, Fan M, Jiao Y, Rosebush M, Samant S, Gu W, Pfeffer LM, Nosrat C A . Pro-inflammatory genes as biomarkers and therapeutic targets in oral squamous cell carcinoma. J Biol Chem, 2010,285(42):32512-32521. [DOI] | [25] | Chuang JY, Yang WH, Chen HT, Huang CY, Tan TW, Lin YT, Hsu CJ, Fong YC, Tang CH . CCL5/CCR5 axis promotes the motility of human oral cancer cells. J Cell Physiol, 2009,220(2):418-426. [DOI] | [26] | Xia H, Kong SN, Chen J, Shi M, Sekar K, Seshachalam VP, Rajasekaran M, Goh B, Ooi LL, Hui KM . MELK is an oncogenic kinase essential for early hepatocellular carcinoma recurrence. Cancer Lett, 2016,383(1):85-93. [DOI] | [27] | Kiseljak-Vassiliades K, Zhang Y, Kar A, Razzaghi R, Xu M, Gowan K, Raeburn CD, Albuja-Cruz M, Jones KL, Somerset H, Fishbein L, Leong S, Wierman ME . Elucidating the role of the maternal embryonic leucine zipper kinase in adrenocortical carcinoma. Endocrinology, 2018,159(7):2532-2544. [DOI] | [28] | Speers C, Zhao SG, Kothari V, Santola A, Liu M, Wilder-Romans K, Evans J, Batra N, Bartelink H, Hayes DF, Lawrence TS, Brown PH, Pierce LJ, Feng FY . Maternal embryonic leucine zipper kinase (MELK) as a novel mediator and biomarker of radioresistance in human breast cancer. Clin Cancer Res, 2016,22(23):5864-5875. [DOI] | [29] | Li S, Li Z, Guo T, Xing XF, Cheng X, Du H, Wen XZ, Ji JF . Maternal embryonic leucine zipper kinase serves as a poor prognosis marker and therapeutic target in gastric cancer. Oncotarget, 2016,7(5):6266-6280. [DOI] | [30] | Liu H, Sun Q, Sun Y, Zhang J, Yuan H, Pang S, Qi X, Wang H, Zhang M, Zhang H, Yu C, Gu C . MELK and EZH2 cooperate to regulate medulloblastoma cancer stem- like cell proliferation and differentiation. Mol Cancer Res, 2017,15(9):1275-1286. [DOI] | [31] | Puts GS, Leonard MK, Pamidimukkala NV, Snyder DE, Kaetzel DM . Nuclear functions of NME proteins. Lab Invest, 2018,98(2):211-218. [DOI] | [32] | Wang C, Wang W, Liu Y, Yong M, Yang Y, Zhou H . Rac GTPase activating protein 1 promotes oncogenic progression of epithelial ovarian cancer. Cancer Sci, 2018,109(1):84-93. [DOI] | [33] | Imaoka H, Toiyama Y, Saigusa S, Kawamura M, Kawamoto A, Okugawa Y, Hiro J, Tanaka K, Inoue Y, Mohri Y, Kusunoki M . RacGAP1 expression, increasing tumor malignant potential, as a predictive biomarker for lymph node metastasis and poor prognosis in colorectal cancer. Carcinogenesis, 2015,36(3):346-354. [DOI] | [34] | Seder C W, Hartojo W, Lin L, Silvers A L, Wang Z, Thomas D G, Giordano T J, Chen G, Chang AC, Orringer MB, Beer DG . INHBA overexpression promotes cell proliferation and may be epigenetically regulated in esophageal adenocarcinoma. J Thorac Oncol, 2009,4(4):455-462. [DOI] | [35] | Lyu S, Jiang C, Xu R, Huang Y, Yan S . INHBA upregulation correlates with poorer prognosis in patients with esophageal squamous cell carcinoma. Cancer Manag Res, 2018,10:1585-1596. [DOI] | [36] | Hansen NU, Genovese F, Leeming DJ, Karsdal MA . The importance of extracellular matrix for cell function and in vivo likeness. Exp Mol Pathol, 2015,98(2):286-294. [DOI] | [37] | Wu C . Focal adhesion: a focal point in current cell biology and molecular medicine. Cell Adh Migr, 2007,1(1):13-18. [DOI] | [38] | He Y, Shao FY, Pi WD, Shi C, Chen YJ, Gong DP, Wang BJ, Cao ZW, Tang KL . Largescale transcriptomics analysis suggests over-expression of BGH3, MMP9 and PDIA3 in oral squamous cell carcinoma. PLoS One, 2016,11(1):e146530. [DOI] | [39] | Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP . Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer, 2009,9(12):862-873. [DOI] | [40] | Gong Z, Yang Q, Zeng Z, Zhang W, Li X, Zu X, Deng H, Chen P, Liao Q, Xiang B, Zhou M, Li X, Li Y, Xiong W, Li G . An integrative transcriptomic analysis reveals p53 regulated miRNA, mRNA, and lncRNA networks in nasopharyngeal carcinoma. Tumour Biol, 2016,37(3):3683-3695. [DOI] |
|