[1] 何中虎, 林作楫, 王龙俊, 肖志敏, 万富世, 庄巧生. 中国小麦品质区划研究. 中国农业科学, 2002, 35(4): 359–364.
[2] Payne PI, Seekings JA, Worland AJ, Jarvis MG, Holt LM. Allelic variation of glutenin subunits and gliadins and its effect on bread-making quality in wheat: Analysis of F5 progeny from Chinese Spring × Chinese Spring (Hope 1A). J Cereal Sci, 1987, 6(2): 103–118.
[3] Singh NK, Shepherd KW. Linkage mapping of genes con-trolling endosperm storage proteins in wheat. 1. Genes on the short arms of group-1 chromosomes. Theor Appl Genet, 1988, 75(6–7): 628–641.
[4] Harberd NP, Bartels D, Thompson RD. Analysis of the gliadin multigene loci in bread wheat using nullisomic-tetrasomic lines. Mol Gen Genet, 1985, 198(2): 234–242.
[5] Cassidy BG, Dvorak J, Anderson OD. The wheat low-molecular-weight glutenin genes: characterization of six new genes and progress in understanding gene family structure. Theor Appl Genet, 1998, 96(6–7): 743–750.
[6] D’Ovidio R, Masci S. The low-molecular-weight glutenin subunits of wheat gluten. J Cereal Sci, 2004, 39: 321–339.
[7] Zhao XL, Xia XC, He ZH, Gale KR, Lei ZS, Appels R, Ma WJ. Characterization of three low-molecular-weight Glu-D3 subunit genes in common wheat. Theor Appl Genet, 2006, 113(7): 1247–1259.
[8] Zhao XL, Xia XC, He ZH, Lei ZS, Appels R, Yang Y, Sun QX, Ma WJ. Novel DNA variations to characterize low molecular weight glutenin Glu-D3 genes and develop STS markers in common wheat. Theor Appl Genet, 2007, 114(3): 451–460.
[9] Levy AA, Galili G, Feldman M. Polymorphism and genetic control of high molecular weight glutenin subunits in wild tetraploid wheat Triticum turgidum var. dicoccoides. Heredity, 1988, 61(1): 63–72.
[10] Valkoun JJ. Wheat pre-breeding using wild progenitors. Euphytica, 2001, 119(1–2): 17–23.
[11] Xu SS, Khan K, Kindworth DL, Faris JD, Nygard G. Chro-mosomal location of genes for novel glutenin subunits and gliadins in wild emmer wheat (Triticum turgidum L. var. dicoccoides). Theor Appl Genet, 2004, 108(7): 1221–1228.
[12] Li XH, Wang AL, Xiao YH, Yan YM, He ZH, Appels R, Ma WJ, Hsam SLK, Zeller FJ. Cloning and characteriza-tion of a novel low molecular weight glutenin subunit gene at the Glu-A3 locus from wild emmer wheat (Triti-cum turgidum L. var. dicoccoides). Euphytica, 2008, 159(1–2): 181–190.
[13] Lafiandra D, Margiotta B, Colaprico G, Masci S, Roth MR, MacRitchie F. Introduction of the D-genome related high and low-Mr glutenin subunits into durum wheat and their effect on technological properties. In: Shewry PR, Thatam AS, eds. Wheat Gluten. Royal Society of Chemistry, UK, 2000, 51–54.
[14] Pflüger LA, D’Ovidio R, Margiotta B, Pena R, Mujeeb-Kazi A, Lafiandra D. Characterisation of high- and low-molecular weight glutenin subunits associated to the D genome of Aegilops tauschii in a collection of synthetic hexaploid wheats. Theor Appl Genet, 2001, 103(8): 1293–1301.
[15] An X, Zhang Q, Yan Y, Li Q, Zhang Y, Wang A, Pei J, Tian J, Wang H, Hsam SLK, Zelle FJ. Cloning and mo-lecular characterization of three novel LMW-i glutenin subunit genes from cultivated einkorn (Triticum mono-coccum L.). Theor Appl Genet, 2006, 113(3): 383–395.
[16] Zhao XL, Yang Y, He Z H, Lei ZS, Ma W, Sun QX, Xia XC. Characterization of novel LMW-GS genes at Glu-D3 locus of chromosome 1D in Aegilops tauschii. Hereditas , 2008, 145(5): 238–250.
[17] 陈佩度, Gill BS. 四倍体小麦染色体4A和B, G染色体组的起源. 作物学报, 1984, 10(3): 146–153.
[18] Kimber G, Athwal RS. A reassessment of the course of evolution of wheat. Proc Natl Acad Sci USA, 1972, 69(4): 912–915.
[19] Daud HM, Gustafson JP. Molecular evidence for Triticum speltoides as a B-genome progenitor of wheat. Genome, 1996, 39(3): 543–548.
[20] Feuillet C, Penger A, Gellner K, Mast A, Keller B. Mo-lecular evolution of receptor-like kinase genes in hexap-loid wheat. Independent evolution of orthologs after poly-ploidization and mechanisms of local rearrangements at paralogous loci. Plant Physiol, 2001, 125(3): 1304–1313.
[21] Wang LH, Zhao XL, He ZH, Ma W, Appels R, Peña RJ, Xia XC. Characterization of low-molecular-weight glu-tenin subunit Glu-B3 genes and development of STS markers in common wheat (Triticum aestivum L.). Theor Appl Genet, 2009, 118(3): 525–539.
[22] Gale KR, Ma W, Zhang W, Rampling L, Hill AS, Appels R, Morris P, Morrel M. Simple high-throughput DNA mark-ers for genotyping in wheat. In: Eastwood R, Hollamby G, Rathjen T, Gororo N (eds.) Proceedings of 10th Austra-lian wheat breeding assembly, Wheat Breeding Society of Australia, Mildura, VIC, 16–21 September 2001, 26–31.
[23] Masci S, D’Ovidio R, Lafiandra D, Kasarda DD. Charac-terization of a low-molecular-weight glutenin subunit gene from bread wheat and the corresponding protein that represents a major subunit of the glutenin polymer. Plant Physiol, 1998, 118(4): 1147–1158.
[24] Lew EJL, Kuzmicky DD, Kasarda DD. Characterization of low molecular weight glutenin subunits by reversed-phase high-performance liquid chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and N-terminal amino acid sequencing. Cereal Chem, 1992, 69(5): 508–515.
[25] Masci S, D’Ovidio R, Lafiandra D, Kasarda DD. A 1B coded low-molecular-weight glutenin subunit associated with quality in durum wheats show strong similarity to subunits present in some bread wheat cultivars. Theor Appl Genet, 2000, 100(3–4): 396–400.
[26] Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P. Genes encoding plastid ace-tyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA, 2002, 99(12): 8133–8138.
[27] Gu YQ, Coleman-Derr D, Kong XY, Anderson OD. Rapid genome evolution revealed by comparative sequence analysis of orthologous regions from four Triticeae ge-nomes. Plant Physiol, 2004, 135(1): 459–470.
[28] Petersen G, Seberg O, Yde M, Berthelsen K. Phylogenetic rela-tionships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aesti-vum). Mol Phylogenet Evol, 2006, 39(1): 70–82.
[29] Luo MC, Yang ZL, You FM, Kawahara T, Waines JG, Dvorak J. The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication. Theor Appl Genet, 2007, 114(6): 947–959.
[30] Jauhar PP. Meiotic restitution in wheat polyhaploids (am-phihaploids): a potent evolutionary force. J Heredity, 2007, 98(16): 188–193.
[31] Liu B, Segal G, Rong JK, Feldman M. A chromo-some-specific sequence common to the B genome of polyploid wheat and Aegilops searsii. Plant Sys E, 2003, 241(1–2): 55–66.
[32] He XY, He ZH, Morris CF, Xia XC. Cloning and phy-logenetic analysis of polyphenol oxidase genes in common wheat and related species. Genet Resour Crop Evol, 2009, 56(3): 311–321. |