[1] Khoushab F, Yamabhai M. Chitin research revisited. Mar Drugs, 2010, 8(7): 1988-2012.[2] Zhao Y, Park RD, Muzzarelli RAA. Chitin deacetylases: properties and applications. Mar Drugs, 2010, 8(1): 24-46.[3] Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Bécard G, Dénarié J. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature, 2011, 469(7328): 58-63.[4] Felse PA, Panda T. Regulation and cloning of microbial chitinase genes. Appl Microbiol Biotechnol, 1999, 51(2): 141-151.[5] Miyashita K, Fujii T, Saito A. Induction and repression of a Streptomyces lividans chitinase gene promoter in response to various carbon sources. Biosci Biotechnol Biochem, 2000, 64(1): 39-43.[6] 谢池楚, 陈月华, 蔡峻, 刘传, 陈艳玲. Bt几丁质酶的基础表达及诱导合成的多态现象. 生物工程学报, 2010, 26(11): 1532-1538.[7] Saito A, Fujii T, Shinya T, Shibuya N, Ando A, Miyashita K. The msiK gene, encoding the ATP-hydrolysing component of N, N'-diacetylchitobiose ABC transporters, is essential for induction of chitinase production in Streptomyces coelicolor A3(2). Microbiol-Sgm, 2008, 154(Pt 11): 3358-3365.[8] Hirano T, Kadokura K, Ikegami T, Shigeta Y, Kumaki Y, Hakamata W, Oku T, Nishio T. Heterodisaccharide 4-O-(N-acetyl-β-D-glucosaminyl)-D-glucosamine is a specific inducer of chitinolytic enzyme production in Vibrios harboring chitin oligosaccharide deacetylase genes. Glycobiology, 2009, 19(9): 1046-1053.[9] Toratani T, Shoji T, Ikehara T, Suzuki K, Watanabe T. The importance of chitobiase and N-acetylglucosamine (GlcNAc) uptake in N, N'-diacetylchitobiose[(GlcNAC)2] utilization by Serratia marcescens 2170. Microbiology, 2008, 154(Pt 5): 1326-1332.[10] 马婉晴, 章珍, 刘悦琳, 王华忠. 大肠杆菌分解代谢产物阻遏效应研究进展. 遗传, 2010, 32(6): 571-576.[11] Plumbridge J. Regulation of PTS gene expression by the homologous transcriptional regulators, Mlc and NagC, in Escherichia coli (or how two similar repressors can behave differently). J Mol Microbiol Biotechnol, 2001, 3(3): 371-380.[12] Nothaft H, Rigali S, Boomsma B, Swiatek M, McDowall KJ, van Wezel GP, Titgemeyer F. The permease gene nagE2 is the key to N-acetylglucosamine sensing and utilization in Streptomyces coelicolor and is subject to multi-level control. Mol Microbiol, 2010, 75(5): 1133-1144.[13] Plumbridge J, Pellegrini O. Expression of the chitobiose operon of Escherichia coli is regulated by three transcription factors: NagC, ChbR and CAP. Mol Microbiol, 2004, 52(2): 437-449.[14] Colson S, van Wezel GP, Craig M, Noens EEE, Nothaft H, Mommaas AM, Titgemeyer F, Joris B, Rigali S. The chitobiose-binding protein, DasA, acts as a link between chitin utilization and morphogenesis in Streptomyces coelicolor. Microbiology, 2008, 154(Pt 2): 373-382.[15] Meibom KL, Li XB, Nielsen AT, Wu CY, Roseman S, Schoolnik GK. The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci USA, 2004, 101(8): 2524-2529.[16] Uchiyama T, Kaneko R, Yamaguchi J, Inoue A, Yanagida T, Nikaidou N, Regue M, Watanabe T. Uptake of N,N'-diacetylchitobiose[(GlcNAc)2] via the phosphotransferase system is essential for chitinase production by Serratia marcescens 2170. J Bacteriol, 2003, 185(6): 1776-1782.[17] Nelson DR, Rhodes RG, Atoyan JA. The chitobiose transporter, chbC, is required for chitin utilization in Borrelia burgdorferi. BMC Microbiol, 2010, 10: 21.[18] Li XB, Roseman S. The chitinolytic cascade in Vibrios is regulated by chitin oligosaccharides and a two-component chitin catabolic sensor/kinase. Proc Natl Acad Sci USA |