[1] Khoushab F, Yamabhai M. Chitin research revisited. Mar Drugs, 2010, 8(7): 1988-2012.[2] Zhao Y, Park RD, Muzzarelli RAA. Chitin deacetylases: properties and applications. Mar Drugs, 2010, 8(1): 24-46.[3] Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Bécard G, Dénarié J. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature, 2011, 469(7328): 58-63.[4] Felse PA, Panda T. Regulation and cloning of microbial chitinase genes. Appl Microbiol Biotechnol, 1999, 51(2): 141-151.[5] Miyashita K, Fujii T, Saito A. Induction and repression of a Streptomyces lividans chitinase gene promoter in response to various carbon sources. Biosci Biotechnol Biochem, 2000, 64(1): 39-43.[6] 谢池楚, 陈月华, 蔡峻, 刘传, 陈艳玲. Bt几丁质酶的基础表达及诱导合成的多态现象. 生物工程学报, 2010, 26(11): 1532-1538.[7] Saito A, Fujii T, Shinya T, Shibuya N, Ando A, Miyashita K. The msiK gene, encoding the ATP-hydrolysing component of N, N'-diacetylchitobiose ABC transporters, is essential for induction of chitinase production in Streptomyces coelicolor A3(2). Microbiol-Sgm, 2008, 154(Pt 11): 3358-3365.[8] Hirano T, Kadokura K, Ikegami T, Shigeta Y, Kumaki Y, Hakamata W, Oku T, Nishio T. Heterodisaccharide 4-O-(N-acetyl-β-D-glucosaminyl)-D-glucosamine is a specific inducer of chitinolytic enzyme production in Vibrios harboring chitin oligosaccharide deacetylase genes. Glycobiology, 2009, 19(9): 1046-1053.[9] Toratani T, Shoji T, Ikehara T, Suzuki K, Watanabe T. The importance of chitobiase and N-acetylglucosamine (GlcNAc) uptake in N, N'-diacetylchitobiose[(GlcNAC)2] utilization by Serratia marcescens 2170. Microbiology, 2008, 154(Pt 5): 1326-1332.[10] 马婉晴, 章珍, 刘悦琳, 王华忠. 大肠杆菌分解代谢产物阻遏效应研究进展. 遗传, 2010, 32(6): 571-576.[11] Plumbridge J. Regulation of PTS gene expression by the homologous transcriptional regulators, Mlc and NagC, in Escherichia coli (or how two similar repressors can behave differently). J Mol Microbiol Biotechnol, 2001, 3(3): 371-380.[12] Nothaft H, Rigali S, Boomsma B, Swiatek M, McDowall KJ, van Wezel GP, Titgemeyer F. The permease gene nagE2 is the key to N-acetylglucosamine sensing and utilization in Streptomyces coelicolor and is subject to multi-level control. Mol Microbiol, 2010, 75(5): 1133-1144.[13] Plumbridge J, Pellegrini O. Expression of the chitobiose operon of Escherichia coli is regulated by three transcription factors: NagC, ChbR and CAP. Mol Microbiol, 2004, 52(2): 437-449.[14] Colson S, van Wezel GP, Craig M, Noens EEE, Nothaft H, Mommaas AM, Titgemeyer F, Joris B, Rigali S. The chitobiose-binding protein, DasA, acts as a link between chitin utilization and morphogenesis in Streptomyces coelicolor. Microbiology, 2008, 154(Pt 2): 373-382.[15] Meibom KL, Li XB, Nielsen AT, Wu CY, Roseman S, Schoolnik GK. The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci USA, 2004, 101(8): 2524-2529.[16] Uchiyama T, Kaneko R, Yamaguchi J, Inoue A, Yanagida T, Nikaidou N, Regue M, Watanabe T. Uptake of N,N'-diacetylchitobiose[(GlcNAc)2] via the phosphotransferase system is essential for chitinase production by Serratia marcescens 2170. J Bacteriol, 2003, 185(6): 1776-1782.[17] Nelson DR, Rhodes RG, Atoyan JA. The chitobiose transporter, chbC, is required for chitin utilization in Borrelia burgdorferi. BMC Microbiol, 2010, 10: 21.[18] Li XB, Roseman S. The chitinolytic cascade in Vibrios is regulated by chitin oligosaccharides and a two-component chitin catabolic sensor/kinase. Proc Natl Acad Sci USA, 2004, 101(2): 627-631.[19] Fritsche K, de Boer W, Gerards S, van den Berg M, van Veen JA, Leveau JHJ. Identification and characterization of genes underlying chitinolysis in Collimonas fungivorans Ter331. FEMS Microbiol Ecol, 2008, 66(1): 123-135.[20] Yang C, Rodionov DA, Li XQ, Laikova ON, Gelfand MS, Zagnitko OP, Romine MF, Obraztsova AY, Nealson KH, Osterman AL. Comparative genomics and experimental characterization of N-acetylglucosamine utilization pathway of Shewanella oneidensis. J Biol Chem, 2006, 281(40): 29872-29885.[21] Boulanger A, Déjean G, Lautier M, Glories M, Zischek C, Arlat M, Lauber E. Identification and regulation of the N-acetylglucosamine utilization pathway of the plant pathogenic bacterium Xanthomonas campestris pv. campestris. J Bacteriol, 2010, 192(6): 1487-1497.[22] Resch M, Roth HM, Kottmair M, Sevvana M, Bertram R, Titgemeyer F, Muller YA. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of YvoA from Bacillus subtilis. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2009, 65(Pt 4): 410-414.[23] Colson S, Stephan J, Hertrich T, Saito A, van Wezel GP, Titgemeyer F, Rigali S. Conserved cis-acting elements upstream of genes composing the chitinolytic system of streptomycetes are DasR-responsive elements. J Mol Microbiol Biotechnol, 2007, 12(1-2): 60-66.[24] Rigali S, Nothaft H, Noens EEE, Schlicht M, Colson S, Müller M, Joris B, Koerten HK, Hopwood DA, Titgemeyer F, van Wezel GP. The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol Microbiol, 2006, 61(5): 1237-1251.[25] Saito A, Shinya T, Miyamoto K, Yokoyama T, Kaku H, Minami E, Shibuya N, Tsujibo H, Nagata Y, Ando A, Fujii T, Miyashita K. The dasABC gene cluster, adjacent to dasR, encodes a novel ABC transporter for the uptake of N, N'-diacetylchitobiose in Streptomyces coelicolor A3(2). Appl Environ Microbiol, 2007, 73(9): 3000-3008.[26] Larsen MH, Leisner JJ, Ingmer H. The chitinolytic activity of Listeria monocytogenes EGD is regulated by carbohydrates but also by the virulence regulator PrfA. Appl Environ Microbiol, 2010, 76(19): 6470-6476.[27] Tilly K, Elias AF, Errett J, Fischer E, Iyer R, Schwartz I, Bono JL, Rosa P. Genetics and regulation of chitobiose utilization in Borrelia burgdorferi. J Bacteriol, 2001, 183(19): 5544-5553.[28] Nelson DR, Rhodes RG, Coy W. Chitobiose utilization in Borrelia burgdorferi is dually regulated by RpoD and RpoS. BMC Microbiol, 2009, 9: 108.[29] Delic I, Robbins P, Westpheling J. Direct repeat sequences are implicated in the regulation of two Streptomyces chitinase promoters that are subject to carbon catabolite control. Proc Natl Acad Sci USA, 1992, 89(5): 1885-1889.[30] Ni XY, Westpheling J. Direct repeat sequences in the Streptomyces chitinase-63 promoter direct both glucose repression and chitin induction. Proc Natl Acad Sci USA, 1997, 94(24): 13116-13121.[31] Francetic O, Badaut C, Rimsky S, Pugsley AP. The ChiA (YheB) protein of Escherichia coli K-12 is an endochitinase whose gene is negatively controlled by the nucleoid- structuring protein H-NS. Mol Microbiol, 2000, 35(6): 1506-1517.[32] Park JK, Okamoto T, Yamasaki Y, Tanaka K, Nakagawa T, Kawamukai M, Matsuda H. Molecular cloning, nucleotide sequencing, and regulation of the chiA gene encoding one of chitinases from Enterobacter sp. G-1. J Ferment Bioeng, 1997, 84(6): 493-501.[33] 肖亮. 地衣芽孢杆菌MY75几丁质酶特性及表达调控元件的研究[学位论文]. 南开大学, 2010.[34] Tsujibo H, Hatano N, Okamoto T, Endo H, Miyamoto K, Inamori Y. Synthesis of chitinase in Streptomyces thermoviolaceus is regulated by a two-component sensor- regulator system. FEMS Microbiol Lett, 1999, 181(1): 83-90.[35] Kormanec J, Šev?íková B, Homérová D. Cloning of a two-component regulatory system probably involved in the regulation of chitinase in Streptomyces coelicolor A3(2). Folia Microbiol, 2000, 45(5): 397-406.[36] Homerová D, Knirschová R, Kormanec J. Response regulator ChiR regulates expression of chitinase gene, chiC, in Streptomyces coelicolor. Folia Microbiol, 2002, 47(5): 499-505.[37] Seo JW, Ohnishi Y, Hirata A, Horinouchi S. ATP-binding cassette transport system involved in regulation of morphological differentiation in response to glucose in Streptomyces griseus. J Bacteriol, 2002, 184(1): 91-103.[38] Rigali S, Schlicht M, Hoskisson P, Nothaft H, Merzbacher M, Joris B, Titgemeyer F. Extending the classification of bacterial transcription factors beyond the helix-turn-helix motif as an alternative approach to discover new cis/trans relationships. Nucleic Acids Res, 2004, 32(11): 3418-3426.[39] Nguyen J, Francou F, Virolle MJ, Guerineau M. Amylase and chitinase genes in Streptomyces lividans are regulated by reg1, a pleiotropic regulatory gene. J Bacteriol, 1997, 179(20): 6383-6390.[40] Nguyen J. The regulatory protein Reg1 of Streptomyces lividans binds the promoter region of several genes repressed by glucose. FEMS Microbiol Lett, 1999, 175(1): 51-58.[41] Fujii T, Miyashita K, Ohtomo R, Saito A. DNA-binding protein involved in the regulation of chitinase production in Streptomyces lividans. Biosci Biotechnol Biochem, 2005, 69(4): 790-799.[42] Saito A, Fujii T, Yoneyama T, Miyashita K. glkA is involved in glucose repression of chitinase production in Streptomyces lividans. J Bacteriol, 1998, 180(11): 2911-2914.[43] Suzuki K, Uchiyama T, Suzuki M, Nikaidou N, Regue M, Watanabe T. LysR-type transcriptional regulator ChiR is essential for production of all chitinases and a chitin-binding protein, CBP21, in Serratia marcescens 2170. Biosci Biotechnol Biochem, 2001, 65(2): 338-347.[44] Miyamoto K, Okunishi M, Nukui E, Tsuchiya T, Kobayashi T, Imada C, Tsujibo H. The regulator CdsS/ CdsR two-component system modulates expression of genes involved in chitin degradation of Pseudoalteromonas piscicida strain O-7. Arch Microbiol, 2007, 188(6): 619-628.[45] Defoirdt T, Ruwandeepika HAD, Karunasagar I, Boon N, Bossier P. Quorum sensing negatively regulates chitinase in Vibrio harveyi. Env Microbiol Rep, 2010, 2(1): 44-49.[46] Eisenbeis S, Lohmiller S, Valdebenito M, Leicht S, Braun V. NagA-dependent uptake of N-acetyl-glucosamine and N-acetyl-chitin oligosaccharides across the outer membrane of Caulobacter crescentus. J Bacteriol, 2008, 190(15): 5230-5238.[47] Liu D, Cai J, Xie CC, Liu C, Chen YH. Purification and partial characterization of a 36-kDa chitinase from Bacillus thuringiensis subsp. colmeri, and its biocontrol potential. Enzyme Microb Tech, 2010, 46(3-4): 252-256.[48] Xiao L, Xie CC, Cai J, Lin ZJ, Chen YH. Identification and characterization of a chitinase-produced Bacillus showing significant antifungal activity. Curr Microbiol, 2009, 58(5): 528-533. |